VOLVO CONSTRUCTION EQUIPMENT

Language Code	Group	Product	No.	Version	Date	Page
GB	160	EXC	8 K	1	2007-08-06	1/5
Applies to models			-	-		-
EC135B LC, E0	C140B LC, EC16	60B LC, EC160B	NLC, EC160C I	L, EC160C NL, E	EC180B LC, EC1	180C L, EC210B
F, EC210B LC,	EC210B LR, EC	C210B NC, EC2	10B NLC, EC21	0C L, EC210C L	R, EC210C N, E	EC210C NL,
EC240B LC, EC	C240B LR, EC24	0B NLC, EC240	C L, EC240C LR	, EC240C NL, E	C290B LC, EC29	00B LR, EC290B
NLC, EC290C	L, EC290C LR, I	EC290C NL, EC	330B LC, EC36	0B LC, EC360B	LR, EC360B NL	.C, EC360C L,
EC360C NL, E	C460B LC, EC4	60B LR, EC4600	C L, EC700B LC	, EW140B, EW1	140C, EW145B,	EW160B,
EW160C. EW1	80B. EW180C. I	EW200B				

ONLY FOR DISTRIBUTORS / DEALERS

Oil analyses

Please pay attention to the safety instructions in the Operator's and Service Manuals concerned.

This Service Bulletin is to be considered as technical information only and is not subject to any reimbursement programs outside normal warranty.

Cause and action

Many oil analysis companies perform fluid analysis programs on Volvo Excavators. There is a risk that the monitoring limits they use may differ from Volvo Excavator's limits in many cases. This means that dealers and customers often receive false alarm reports. The reason is that these analysis companies may be using different monitoring limits versus Volvo Excavators based upon their experience with other competitors monitoring limit guidelines. On Volvo Excavators, please use the monitoring limits according to tables 1, 2, and 3 in this service bulletin.

MORE CARE. BUILT IN.

Language Code	Group	Product	No.	Version	Date	Page
GB	160	EXC	8 K	1	2007-08-06	2/5

Particle		Engine 4~7 liters	Engine 9~16 liters	Note
Aluminium	Al	25	10	PPM
Lead	Pb	30	20	PPM
Iron	Fe	150	100	PPM
Silica	Si	20	20	PPM
Copper	Cu	20	15	PPM
Chromium	Cr	20	10	PPM
Nickel	Ni		10	PPM
Tin	Sn		10	PPM
Water		0.20%	0.10%	
Soot		3% *	2% *	
Fuel		10% **	3% *	
Zinc	Zn	15		

Table 1. Monitoring limits for Volvo engines.

* When VDS-3 oil is used : < 3%

** Applies in isolated cases. If the fuel quality reaches 1~2% or more over a longer time period, corrective action must be taken.

NOTE! The values are to be regarded as monitoring limits and not as absolute values. It is important to establish a trend and not to make judgements based on isolated samples.

Generally the engine oil should be able to carry up to 2% of soot for up to 500 operating hours. The engine oil should meet the requirements according to Operator's manual. If oil of a lower specification is used, the levels of soot will rise earlier.

Different oils have a varying ability of carrying soot depending on compounding and additives. The ability of oil to carry soot means that the soot particles stick to components in the oil and are carried around in the system, whereas in an oil that cannot carry soot the soot particles stick together and clog up the oil filter.

Higher levels of soot may arise because of lower fuel quality or poor operating conditions. Engines which are run at idling speed for long periods generate more soot in the oil.

Language Code	Group	Product	No.	Version	Date	Page
GB	160	EXC	8 K	1	2007-08-06	3/5

Table 2. Monitoring limits for hydraulic systems of Volvo.

Particle		Hydraulic system (EC- model)	Hydraulic system (EW-model)	Note
Aluminium	Al	20	20	PPM
Lead	Pb	20	20	PPM
Iron	Fe	25	25	PPM
Silica	Si	50	50	PPM
Copper	Cu	150	150	PPM
Chromium	Cr	10	10	PPM
Nickel	Ni	10	10	PPM
Water		0.10%	0.10%	
ISO code	ISO4406	22/20/18	22/20/17	

NOTE! The values are to be regarded as monitoring limits and not as absolute values. It is important to establish a trend and not to make judgements based on isolated samples.

Table 3. Monitoring limits for power transmission system of Volvo.

Particla		Swing or Travel	Travel gearbox	Fron (EW-	t axle model)	Rear axle	Noto
		(EC- model)	(EW-model)	l) Hub	Differ- ential	(EW-model)	Note
Aluminium	AI		100	100	100	100	PPM
Lead	Pb	50					PPM
Iron	Fe	500	1200	1200	500	1200	PPM
Silica	Si	100					PPM
Copper	Cu	50	500	200	200	200	PPM
Water		0.25%	0.10%	0.10%	0.10%	0.10%	

NOTE! The values are to be regarded as monitoring limits and not as absolute values. It is important to establish a trend and not to make judgements based on isolated samples.

In cases where oil analysis shows a high PPM content, carry out :

- 1 Oil change and filter replacement.
- 2 Further oil analyses :
 - at first directly after the oil change and filter replacement.
 - and then three oil analyses at intervals of 100 hours.

These oil analyses provide an answer to the tendency, which may turn out as follows :

- 1 PPM content drops. Wear is normal.
- 2 PPM content remains at a high but stable level. Wear is normal.
- 3 PPM content continues to rise. This indicates abnormal wear and the customer should be informed.

Language Code	Group	Product	No.	Version	Date	Page
GB	160	EXC	8 K	1	2007-08-06	4/5

4 PPM content varies greatly up and down. This indicates presence of foreign particles caused by working environment, storage of oil etc.

It is important to note that the iron content increases with a defective air cleaner system before one can note a rising silicon content. That is, in the case of rising iron content, the air cleaner system must be checked.

Oil sampling should be carried out as follows :

- 1 The oil should be at normal operating temperature.
- 2 The engine should be running at low idling and a draining hose should be connected to a pressure outlet for the transmission.
- 3 Regarding engines where there is no pressure outlet, the oil should be sucked up with the aid of a "hand pump".

The sample bottle must not be filled directly from the drain plug, as the oil at the bottom of the sump may have a higher concentration of contaminants and this will lead to a misleading analysis. The possible origin of the different particles is shown in table 4.

NOTE! An oil analysis does not provide an absolute guarantee of entirely avoiding a future breakdown. It can only provide an indication of the condition of the machine.

Certain breakdowns can develop fairly quickly, that is, an oil analysis at x hours may show normal PPM contents and a breakdown may occur prior to the next oil sample. When in doubt as to what action should be taken as a result of the oil analysis, contact Volvo CE Service Department.

Other aspects of oil analyses

All oils contain a varying degree of different additives in order to achieve required quality and performance requirements. These additives also contain the metals which show up in the analysis. Various amounts of metals occur depending on :

- 1 Which type of oil is being produced (engine, transmission, axle oil).
- 2 Which company is making the oil.
- 3 On which market the oil will be sold (price, quality, competition).
- 4 Which requirements the customer demands.

The following metals occur :

Barium	Ва
Calcium	Са
Magnesium	Mg
Boron	В
Phosphorus	Р
Zinc	Zn
Sodium	Na

Language Code	Group	Product	No.	Version	Date	Page
GB	160	EXC	8 K	1	2007-08-06	5/5

Table 4. F	Probable	origin o	of pa	rticles	in er	ngine	oil.
			1				

Particle	9	Engine		
Aluminium	Al	Pistons.		
Lead	Pb	Big-end and main crankshaft bearings (all types of plain bearings). Oil cooler.		
Iron	Fe	Cylinder liners, camshaft, valve tappets, valve, guides and crankshaft.		
Silica	Si	Dust, dirt etc.		
Copper	Cu	Big-end and main crankshaft bearings (all types of plain bearings). Water and oil cool- ers		
Chromium	Cr	Piston rings and valves.		
Tin	Sn	Slide bearings.		
Water		Cooling and condensation water.		