

Machine Id

## WEAR NORMAL CONTAMINATION NORMAL FLUID CONDITION ABNORMAL

# OR1975

**Rear Right Final Drive** 

## PETRO CANADA PRODURO TO-4 SAE 30 (10 LTR)

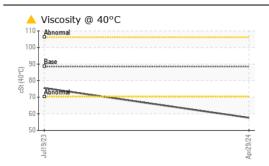
#### RECOMMENDATION

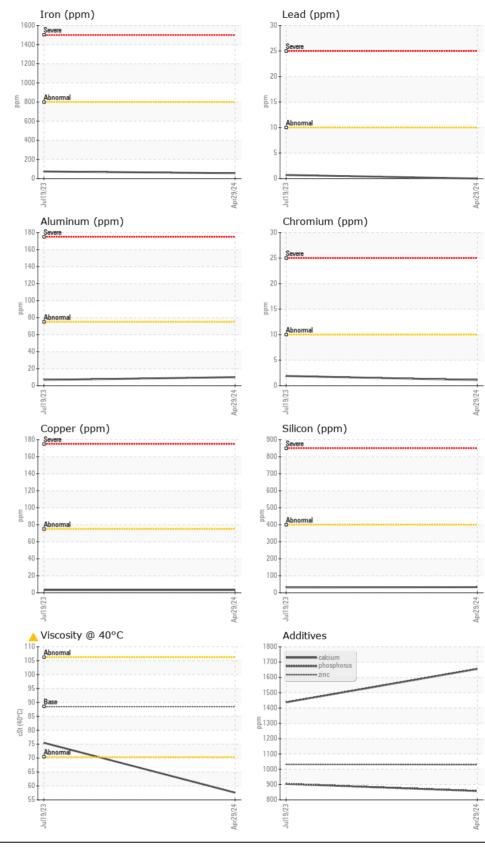
Confirm the source of the lubricant being utilized for top-up/fill. Resample at the next service interval to monitor. The fluid was specified as PETRO CANADA PRODURO TO-4 SAE 30, however, a fluid match indicates that this fluid is SAE 20 Transmission/Drive Train Oil. Please confirm the oil type and grade on your next sample.

**WEAR** 

All component wear rates are normal.

#### CONTAMINATION


There is no indication of any contamination in the oil.


### FLUID CONDITION

The oil viscosity is lower than typical, possibly indicating the addition of lighter grade oil. The condition of the oil is acceptable for the time in service.

| TestUOMMethodLimit/AbrCurrentHistory1HisSample NumberClient InfoGFL0113412GFL0087349Sample DateClient Info29 Apr 202419 Jul 2023Machine AgehrsClient Info82076950                                                                                                                                                                                                                                                      |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Sample Date Client Info 29 Apr 2024 19 Jul 2023                                                                                                                                                                                                                                                                                                                                                                        | story2           |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| Machine Age hrs Client Info 8207 6950                                                                                                                                                                                                                                                                                                                                                                                  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| Oil Age hrs Client Info 1000 1000                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| Filter Age   hrs   Client Info   0   1000                                                                                                                                                                                                                                                                                                                                                                              |                  |
| Oil Changed Client Info Not Changd Not Changd                                                                                                                                                                                                                                                                                                                                                                          |                  |
| Filter Changed Client Info N/A N/A                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| Sample Status ABNORMAL NORMAL                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| Iron ppm ASTM D5185(m) >800 <b>56</b> 74 -                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| Vallow Matal scalar Visual* NONE NONE NONE                                                                                                                                                                                                                                                                                                                                                                             |                  |
| Yellow Metal scalar Visual* NONE NONE -                                                                                                                                                                                                                                                                                                                                                                                |                  |
| Yellow Metal   scalar   Visual*   NONE   NONE   NONE   -     Silicon   ppm   ASTM D5185(m)   >400   33   31   -                                                                                                                                                                                                                                                                                                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| Silicon   ppm   ASTM D5185(m)   >400   33   31   -     Potassium   ppm   ASTM D5185(m)   >20   5   3   -                                                                                                                                                                                                                                                                                                               |                  |
| Silicon   ppm   ASTM D5185(m)   >400   33   31   -     Potassium   ppm   ASTM D5185(m)   >20   5   3   -     Water   WC Method   >0.2   NEG   NEG   -                                                                                                                                                                                                                                                                  |                  |
| Silicon   ppm   ASTM D5185(m)   >400   33   31   -     Potassium   ppm   ASTM D5185(m)   >20   5   3   -     Water   WC Method   >0.2   NEG   NEG   -     Silt   scalar   Visual*   NONE   NONE   NONE   NONE                                                                                                                                                                                                          |                  |
| Silicon   ppm   ASTM D5185(m)   >400   33   31   -     Potassium   ppm   ASTM D5185(m)   >20   5   3   -     Water   WC Method   >0.2   NEG   NEG   -     Silt   scalar   Visual*   NONE   NONE   NONE   NONE   -                                                                                                                                                                                                      |                  |
| Silicon ppm ASTM D5185(m) >400 33 31 -   Potassium ppm ASTM D5185(m) >20 5 3 -   Water WC Method >0.2 NEG NEG -   Silt scalar Visual* NONE NONE NONE VLITE   Debris scalar Visual* NONE NONE NONE ONE -                                                                                                                                                                                                                |                  |
| SiliconppmASTM D5185(m)>4003331-PotassiumppmASTM D5185(m)>2053-WaterWC Method>0.2NEGNEG-SiltscalarVisual*NONENONENONENONEDebrisscalarVisual*NONENONENONEVLITESand/DirtscalarVisual*NORMNORMENONENONE                                                                                                                                                                                                                   | <br><br><br>     |
| SiliconppmASTM D5185(m)>4003331-PotassiumppmASTM D5185(m)>2053-WaterWC Method>0.2NEGNEG-SilitscalarVisual*NONENONENONENONEDebrisscalarVisual*NONENONENONESand/DirtscalarVisual*NORMNORMENONEAppearancescalarVisual*NORMNORMLNORML                                                                                                                                                                                      | <br><br><br><br> |
| SiliconppmASTM D5185(m)>4003331-PotassiumppmASTM D5185(m)>2053-WaterWC Method>0.2NEGNEG-SiltscalarVisual*NONENONENONE-DebrisscalarVisual*NONENONEVLITE-Sand/DirtscalarVisual*NONENONENONE-AppearancescalarVisual*NORMLNORMLNORML-OdorscalarVisual*>0.2NEGEmulsified WaterscalarVisual*NORMLNORMLNORML-                                                                                                                 | <br><br><br><br> |
| SiliconppmASTM D5185(m)>4003331-PotassiumppmASTM D5185(m)>2053-WaterWC Method>0.2NEGNEG-SiltscalarVisual*NONENONENONE-DebrisscalarVisual*NONENONEVLITE-Sand/DirtscalarVisual*NONENONENONE-AppearancescalarVisual*NORMNORMLNORML-OdorscalarVisual*NORMLNORMLNORML-Emulsified WaterscalarVisual*>0.2NEGNEG-SodiumppmASTM D5185(m)33-                                                                                     |                  |
| SiliconppmASTM D5185(m)>4003331-PotassiumppmASTM D5185(m)>2053-WaterWC Method>0.2NEGNEG-SiltscalarVisual*NONENONENONE-DebrisscalarVisual*NONENONEVLITE-Sand/DirtscalarVisual*NONENONENONE-AppearancescalarVisual*NORMLNORMLNORML-OdorscalarVisual*NORMLNORMLNORML-Emulsified WaterscalarVisual*>0.2NEG-SodiumppmASTM D5185(m)224-                                                                                      |                  |
| SiliconppmASTM D5185(m)>4003331 $\sim$ PotassiumppmASTM D5185(m)>2053 $\sim$ WaterWC Method>0.2NEGNEG $\sim$ SilitscalarVisual*NONENONENONENONEDebrisscalarVisual*NONENONENONE $<$ Sand/DirtscalarVisual*NONENONENONE $<$ AppearancescalarVisual*NORMLNORMLNORMLNORMLOdorscalarVisual*NORMLNORMLNORMLNORML $<$ SodiumppmASTM D5185(m)224 $<$ BariumppmASTM D5185(m)0<1                                                 |                  |
| SiliconppmASTM D5185(m)>4003331 $\sim$ PotassiumppmASTM D5185(m)>2053 $\sim$ WaterWC Method>0.2NEGNEG $\sim$ SilitscalarVisual*NONENONENONENONEDebrisscalarVisual*NONENONENONENONESand/DirtscalarVisual*NONENONENONENONEAppearancescalarVisual*NORMNORMLNORMLNORMLOdorscalarVisual*NORMLNORMLNORMLNORMLNORMLSodiumppmASTM D5185(m)2333 $\sim$ BoronppmASTM D5185(m)0<1                                                 |                  |
| SiliconppmASTM D5185(m)>4003331 $\sim$ PotassiumppmASTM D5185(m)>2053 $\sim$ WaterWC Method>0.2NEGNEG $\sim$ SilitscalarVisual*NONENONENONENONEDebrisscalarVisual*NONENONENONENONESand/DirtscalarVisual*NONENONENONENONEAppearancescalarVisual*NORMNORMLNORMLNORMLOdorscalarVisual*NORMSoftNORMLNORMLNORMLSodiumppmASTM D5185(m)233 $\sim$ BoronppmASTM D5185(m)0<1                                                    |                  |
| SiliconppmASTM D5185(m)>4003331-PotassiumppmASTM D5185(m)>2053-WaterWC Method>0.2NEGNEG-SiltscalarVisual*NONENONENONEDebrisscalarVisual*NONENONEVLITESand/DirtscalarVisual*NORMNORMNORMLAppearancescalarVisual*NORMLNORMLNORMLOdorscalarVisual*NORMLNORMLNORMLEmulsified WaterscalarVisual*>0.2NEG-SodiumppmASTM D5185(m)224-BariumppmASTM D5185(m)0<10-MalganeseppmASTM D5185(m)9<1<1-MagnesiumppmASTM D5185(m)9<1<1- |                  |
| SiliconppmASTM D5185(m)>4003331-PotassiumppmASTM D5185(m)>2053-WaterWC Method>0.2NEGNEG-SiltscalarVisual*NONENONENONE-DebrisscalarVisual*NONENONEVLITE-Sand/DirtscalarVisual*NONENONENONE-AppearancescalarVisual*NORMLNORMLNORML-OdorscalarVisual*NORMLNORMLNORML-SodiumppmASTM D5185(m)224-BoronppmASTM D5185(m)0<10-MolybdenumppmASTM D5185(m)0<11-MagnesiumppmASTM D5185(m)9<1<1-                                   |                  |
| SiliconppmASTM D5185(m)>4003331 $\sim$ PotassiumppmASTM D5185(m)>2053 $\sim$ WaterWC Method>0.2NEGNEG $\sim$ SiltscalarVisual*NONENONENONENONEDebrisscalarVisual*NONENONENONENONESand/DirtscalarVisual*NONENONENONE $\sim$ AppearancescalarVisual*NORMNORMLNORMLNORMLOdorscalarVisual*NORMLNORMLNORMLNORML $\sim$ SodiumppmASTM D5185(m)224 $\sim$ BariumppmASTM D5185(m)0<1                                           |                  |
| SiliconppmASTM D5185(m)>4003331 $\sim$ PotassiumppmASTM D5185(m)>2053 $\sim$ WaterWC Method>0.2NEGNEG $\sim$ SiltscalarVisual*NONENONENONENONEDebrisscalarVisual*NONENONENONENONESand/DirtscalarVisual*NONENONENONE $\sim$ AppearancescalarVisual*NORMNORMLNORMLNORMLOdorscalarVisual*NORMLNORMLNORMLNORML $\sim$ SodiumppmASTM D5185(m)224 $\sim$ BariumppmASTM D5185(m)0<1                                           |                  |

Submitted By: Charles Bergeron





Laboratory : WearCheck - C8-1175 Appleby Line, Burlington, ON L7L 5H9 GFL Environmental - 720 - Lafleche - Landfill CALA Sample No. : GFL0113412 Received :09 May 2024 17125 Lafleche Road, Lab Number : 09 May 2024 Moose Creek, ON : 02634386 Tested ISO 17025:2017 Diagnosed Accredited Unique Number : 5775539 : 10 May 2024 - Kevin Marson CA K0C 1W0 Laboratory Test Package : MOB 1 Contact: Charles Bergeron To discuss this sample report, contact Customer Service at 1-800-268-2131. cbergeron@gflenv.com T: (613)538-4853 Test denoted (\*) outside scope of accreditation, (m) method modified, (e) tested at external lab. F: Validity of results and interpretation are based on the sample and information as supplied.

Submitted By: Charles Bergeron Page 2 of 2