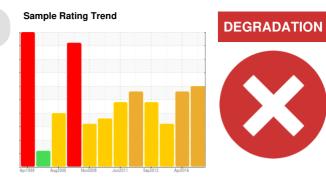
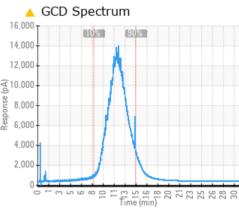

PROBLEM SUMMARY


PARKER BOILERS 1


Heat Transfer Fluid Fluid PETRO CANADA CALFLO AF (600 GAL)

COMPONENT CONDITION SUMMARY

RECOMMENDATION

AN is severely elevated in conjunction with Pentane insolubles elevated. The GCD 90% distillation point is elevated. This data indicates oxidation and has caused heavy sludge and insolubles in the system. The viscosity has elevated significantly confirming sludge and system fouling.

Take another sample and purge oil before capturing sample to confirm results.

PROBLEMATIC TEST RESULTS

Sample Status				SEVERE	SEVERE	SEVERE
Acid Number (AN)	mg KOH/g	ASTM D974*	0.03	6.04	9.17	1 .55
Visc @ 40°C	cSt	ASTM D7279(m)	32.7	41.2	33.0	32.6
Pentane Insolubles	%	ASTM D893(m)*		9.50	1.09	0.257
(GCD) 90% Distillation Point	°C	ASTM D2887*	475	489.0	485.0	475.6

Customer Id: CUSANY Sample No.: WC1234567 Lab Number: 01234567 Test Package: HTTFL

To manage this report scan the QR code

To discuss the diagnosis or test data: Ron LeBlanc +1 (541)678-7044 Ronald.LeBlancSr@HFSinclair.com

To change component or sample information: Gloria Gonzalez +1 (289)291-4643 x4643 gloria.gonzalez@wearcheck.com There are no recommended actions for this sample.

HISTORICAL DIAGNOSIS

19 Apr 2016 Diag: Steven Slanker

19 Apr 2010 Diag. Steven Staliker

Acid number and pentane insoluble are very high. Recommend drain, flush and recharge system with fresh Calflo AF. Pentane Insolubles levels are severely high. Acid Number (AN) is severely high. COC Flash Point is marginally low.

12 Oct 2013 Diag: Gaston Arseneault

Even though it appears the acid level (Acid Number) dropped a bit, it is still very high and exceeds condemning limits. Therefore we can expect it to rise even further. If an oil change was done then it appears a fair amount of the previously acidic oil was left in the system, or the fluid still sees contamination from an acidic material. If a system cleaningm, flushing and refill has not taken place since the last sample we recommend to plan for it so the fluid can look healthy again. Acid Number (AN) is severely high.

22 Sep 2012 Diag: Gaston Arseneault

DEGRADATION

The TAN is still rising and is now well beyond condemning limits. The insoluble solids are also exceeding severe warning limits. We have been advising for years to change this fluid and we say it again. The fluid needs to be replaced and the system thoroughly cleaned before production related issues start to appear if it hasn't started already.

view report

OIL ANALYSIS REPORT

Sample Rating Trend

DEGRADATION

X

PARKER BOILERS 1

Heat Transfer Fluid Fluid PETRO CANADA CALFLO AF (600 GAL)

DIAGNOSIS

Recommendation

AN is severely elevated in conjunction with Pentane insolubles elevated. The GCD 90% distillation point is elevated. This data indicates oxidation and has caused heavy sludge and insolubles in the system. The viscosity has elevated significantly confirming sludge and system fouling.

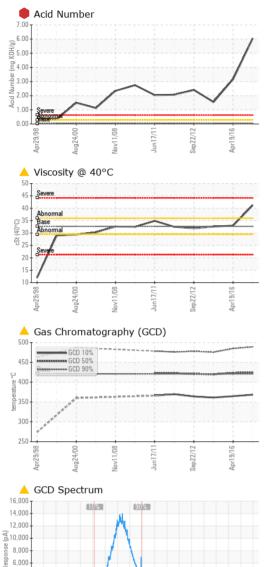
Take another sample and purge oil before capturing sample to confirm results.

Contamination

Pentane Insolubles levels are severely high.

Fluid Condition

Acid Number (AN) is severely high. Visc @ 40°C is abnormally high. (GCD) 90% Distillation Point is marginally high.


Sample Number Client Info WC PC PC Sample Date Client Info 13 Oct 2022 19 Apr 2016 12 Oct 201 Machine Age days Client Info 0 0 0 Oil Age days Client Info 3 4 1 1 Oil Changed Client Info N/A N/A N/A N/A Sample Status Imt/base current history 1 history 1 Iron ppm ASTM 05185(m) >21 0 0 0 Nickel ppm ASTM 05185(m) >21 0 0 0 0 Silver ppm ASTM 05185(m) >21 0			Apr1998	Aug2000 Nov2008	JunŽ011 SepŽ012	Apr2016	
Sample Date Client Info 13 Oct 2022 19 Apr 2016 12 Oct 2010 Machine Age days Client Info 0 0 0 Oil Age days Client Info 3 4 1 Oil Changed Client Info N/A N/A N/A Sample Status Image Current history 1 history 1 history 1 Iron ppm ASTM D5185(m) >21 0 0 0 Nickel ppm ASTM D5185(m) >21 <1 <1 1 Copper ppm ASTM D5185(m) >21 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	SAMPLE INFORM	IATION	method	limit/base	current	history 1	history 2
Machine Age days Client Info 0 0 0 Oil Age days Client Info 3 4 1 Oil Changed Client Info N/A N/A N/A Sample Status Image Client Info N/A N/A N/A Sample Status Image Current history history history Iron ppm ASTM D5165(m) >21 0 0 0 Nickel ppm ASTM D5165(m) >21 0 0 0 Nickel ppm ASTM D5165(m) >21 0 0 0 Silver ppm ASTM D5165(m) >21 1 1 1 1 Lead ppm ASTM D5165(m) >21 1 1 1 1 1 Copper ppm ASTM D5165(m) >21 1 1 1 1 Copper ppm ASTM D5165(m) 21 1 1	Sample Number		Client Info		wc	PC	PC
Oil Age days Client Info N/A N/A N/A Sample Status Client Info N/A SEVERE SEVERE SEVERE SEVERE SEVERE WEAR METALS method limit/base current history 1 history 1 Iron ppm ASTM D5185(m) >210 0 0 0 Nickel ppm ASTM D5185(m) >21 0 0 0 Silver ppm ASTM D5185(m) >21 0 0 0 Aluminum ppm ASTM D5185(m) >21 c1 1 c1 Lead ppm ASTM D5185(m) >21 c1 c1 c1 c1 Attimony ppm ASTM D5185(m) >21 c1 c1 c1 c1 Attimony ppm ASTM D5185(m) >21 c1	Sample Date		Client Info		13 Oct 2022	19 Apr 2016	12 Oct 2013
Oil Changed Client Info N/A N/A N/A N/A Sample Status Client Info N/A SEVERE SEVERE SEVERE WEAR METALS method limit/base current history 1 history 1 Iron ppm ASTM D5185(m) >200 93 63 82 Chromium ppm ASTM D5185(m) >21 0 0 0 Nickel ppm ASTM D5185(m) >21 0 0 0 Silver ppm ASTM D5185(m) >21 0 0 0 Aluminum ppm ASTM D5185(m) >21 <1 0 0 Lead ppm ASTM D5185(m) >21 <1 <1 <1 <1 Lead ppm ASTM D5185(m) >21 <1 <1 <1 <1 Vanadium ppm ASTM D5185(m) >21 <1 <1 <1 <1 Astmb D5185(m) 21 <	Machine Age	days	Client Info		0	0	0
Sample Status SEVERE SEVERE SEVERE SEVERE SEVERE WEAR METALS method limit/base current history 1 history 1 Iron ppm ASTM D5185(m) >200 93 63 82 Chromium ppm ASTM D5185(m) >21 0 0 0 Nickel ppm ASTM D5185(m) >21 0 0 0 Silver ppm ASTM D5185(m) >21 0 0 0 Lead ppm ASTM D5185(m) >21 <1	Oil Age	days	Client Info		3	4	1
WEAR METALS method limit/base current history 1 history 1 Iron ppm ASTM D5185(m) >200 93 63 82 Chromium ppm ASTM D5185(m) >21 0 0 0 Nickel ppm ASTM D5185(m) >21 0 0 0 Titanium ppm ASTM D5185(m) >21 0 0 0 Aluminum ppm ASTM D5185(m) >21 <1	Oil Changed		Client Info		N/A	N/A	N/A
Iron ppm ASTM D5185(m) >200 93 63 82 Chromium ppm ASTM D5185(m) >21 0 0 0 Nickel ppm ASTM D5185(m) >21 0 0 0 Titanium ppm ASTM D5185(m) >21 0 0 0 Silver ppm ASTM D5185(m) >21 0 0 0 Aluminum ppm ASTM D5185(m) >21 <1 0 0 Lead ppm ASTM D5185(m) >21 <1 <1 <1 <1 Copper ppm ASTM D5185(m) >21 <1 0 <1 <1 Antimony ppm ASTM D5185(m) >21 <1 0 0 0 Qamadium ppm ASTM D5185(m) >21 <1 0 0 0 Qamadium ppm ASTM D5185(m) 0 <1 <1 <1 <1 0 0	Sample Status				SEVERE	SEVERE	SEVERE
Chromium ppm ASTM D5185(m) >21 0 0 0 Nickel ppm ASTM D5185(m) >21 0 0 0 Silver ppm ASTM D5185(m) >21 0 0 0 Aluminum ppm ASTM D5185(m) >21 0 0 0 Aluminum ppm ASTM D5185(m) >21 <1	WEAR METALS		method	limit/base	current	history 1	history 2
Nickel ppm ASTM D5185(m) >21 0 0 0 Titanium ppm ASTM D5185(m) >21 0 0 0 Silver ppm ASTM D5185(m) >21 0 0 0 Aluminum ppm ASTM D5185(m) >21 <1	Iron	ppm	ASTM D5185(m)	>200	93	63	82
Titanium ppm ASTM D5185(m) >21 0 0 0 Silver ppm ASTM D5185(m) >21 0 0 0 Aluminum ppm ASTM D5185(m) >21 <1	Chromium	ppm	ASTM D5185(m)	>21	0	0	0
Silver ppm ASTM D5185(m) >21 0 0 0 Aluminum ppm ASTM D5185(m) >21 <1	Nickel	ppm	ASTM D5185(m)	>21	0	0	0
Aluminum ppm ASTM D5185(m) >21 <1 0 <1 Lead ppm ASTM D5185(m) >21 <1	Titanium	ppm	ASTM D5185(m)	>21	0	0	0
Lead ppm ASTM D5185(m) >21 <1 <1 <1 Copper ppm ASTM D5185(m) >21 <1	Silver	ppm	ASTM D5185(m)	>21	0	0	0
Copper ppm ASTM D5185(m) >21 <1 <1 <1 <1 Tin ppm ASTM D5185(m) >21 0 <1	Aluminum	ppm	ASTM D5185(m)	>21	<1	0	<1
Tin ppm ASTM D5185(m) >21 0 <1 <1 Antimony ppm ASTM D5185(m) >21 <1	Lead	ppm	ASTM D5185(m)	>21	<1	<1	<1
Antimony ppm ASTM D5185(m) >21 <1 0 0 Vanadium ppm ASTM D5185(m) 0 0 0 0 Beryllium ppm ASTM D5185(m) 0 0 0 0 Cadmium ppm ASTM D5185(m) 0 0 0 0 ADDITIVES method limit/base current history 1 history Boron ppm ASTM D5185(m) 0 <1	Copper	ppm	ASTM D5185(m)	>21	<1	<1	<1
Vanadium ppm ASTM D5185(m) 0 0 0 0 Beryllium ppm ASTM D5185(m) 0 0 0 0 Cadmium ppm ASTM D5185(m) 0 0 0 0 ADDITIVES method limit/base current history 1 history Boron ppm ASTM D5185(m) 0 <1	Tin	ppm	ASTM D5185(m)	>21	0	<1	<1
Beryllium ppm ASTM D5185(m) 0 0 0 Cadmium ppm ASTM D5185(m) 0 0 0 ADDITIVES method limit/base current history 1 history 1 Boron ppm ASTM D5185(m) 0 <1 <1 <1 Barium ppm ASTM D5185(m) 0 <1 <1 <1 <1 Barium ppm ASTM D5185(m) 0 0 0 0 0 0 Molybdenum ppm ASTM D5185(m) 0 0 0 0 0 0 Magnesium ppm ASTM D5185(m) 0 0 1 <1 <1 <1 Magnesium ppm ASTM D5185(m) 0 2 1 <1 <1 <1 Magnesium ppm ASTM D5185(m) 270 2677 238 226 23 Zinc ppm ASTM D5185(m) 10 21 43	Antimony	ppm	ASTM D5185(m)	>21	<1	0	0
Cadmium ppm ASTM D5185(m) 0 0 0 ADDITIVES method limit/base current history 1 history 1 Boron ppm ASTM D5185(m) 0 <1 <1 <1 Barium ppm ASTM D5185(m) 0 <1 <1 <1 <1 Barium ppm ASTM D5185(m) 0 0 0 0 0 0 Molybdenum ppm ASTM D5185(m) 0 0 0 0 0 0 Magnesium ppm ASTM D5185(m) 0 0 1 <1 <1 <1 Magnesium ppm ASTM D5185(m) 0 0 1 <1< <1 <1 Magnesium ppm ASTM D5185(m) 0 <1 <1 <1 <1 <1 Magnesium ppm ASTM D5185(m) 270 2667 238 226 3 Sulfur ppm ASTM D518	Vanadium	ppm	ASTM D5185(m)		0	0	0
ADDITIVES method limit/base current history 1 history 1 Boron ppm ASTM D5185(m) 0 <1	Beryllium	ppm	ASTM D5185(m)		0	0	0
Boron ppm ASTM D5185(m) 0 <1 <1 <1 Barium ppm ASTM D5185(m) 0 0 0 0 0 Molybdenum ppm ASTM D5185(m) 0 0 0 0 0 0 Magnese ppm ASTM D5185(m) 0 1 <1 <1 <1 Magnesium ppm ASTM D5185(m) 0 0 0 0 0 Calcium ppm ASTM D5185(m) 0 0 <1 <1 <1 Magnesium ppm ASTM D5185(m) 0 <1 <1 <1 <1 Magnesium ppm ASTM D5185(m) 270 267 238 226 3 Zinc ppm ASTM D5185(m) 0 3 2 3 3 Sulfur ppm ASTM D5185(m) 10 21 43 52 1 CONTAMINANTS method limit/base cure	Cadmium	ppm	ASTM D5185(m)		0	0	0
Barium ppm ASTM D5185(m) 0	ADDITIVES		method	limit/base	current	history 1	history 2
Molybdenum ppm ASTM D5185(m) 0 0 0 0 0 Manganese ppm ASTM D5185(m) 0 1 <1	Boron	ppm	ASTM D5185(m)	0	<1	<1	<1
Manganese ppm ASTM D5185(m) 0 1 <1 <1 Magnesium ppm ASTM D5185(m) 0 0 0 0 0 0 Calcium ppm ASTM D5185(m) 0 0 0 0 0 0 0 Calcium ppm ASTM D5185(m) 0 <1 <1 <1 4 Phosphorus ppm ASTM D5185(m) 270 267 238 226 Zinc ppm ASTM D5185(m) 0 3 2 3 Sulfur ppm ASTM D5185(m) 10 21 43 52 Lithium ppm ASTM D5185(m) >25 1 <1 <1 CONTAMINANTS method limit/base current history history Silicon ppm ASTM D5185(m) >25 1 <1 2 Sodium ppm ASTM D5185(m) >21 <1 <1 <1 <1 Potassium ppm ASTM D5185(m) >20 <1 0	Barium	ppm	ASTM D5185(m)	0	0	0	0
Magnesium ppm ASTM D5185(m) 0 0 0 0 Calcium ppm ASTM D5185(m) 0 <1	Molybdenum	ppm	ASTM D5185(m)	0	0	0	0
Calcium ppm ASTM D5185(m) 0 <1 <1 4 Phosphorus ppm ASTM D5185(m) 270 267 238 226 Zinc ppm ASTM D5185(m) 0 3 2 3 Sulfur ppm ASTM D5185(m) 10 21 43 52 Lithium ppm ASTM D5185(m) 10 21 <1	Manganese	ppm	ASTM D5185(m)	0	1	<1	<1
Phosphorus ppm ASTM D5185(m) 270 267 238 226 Zinc ppm ASTM D5185(m) 0 3 2 3 Sulfur ppm ASTM D5185(m) 10 21 43 52 Lithium ppm ASTM D5185(m) 10 21 43 52 Lithium ppm ASTM D5185(m) 10 21 43 52 Lithium ppm ASTM D5185(m) 10 21 43 52 Solicon ppm ASTM D5185(m) >25 1 <1 21 Sodium ppm ASTM D5185(m) >25 1 <1 2 Sodium ppm ASTM D5185(m) >20 <1 0 0 Water % ASTM D5185(m) >20 <1 0 0 0 ppm ASTM D5186(m) >20 <1 0 0 0 0 Sodium ppm ASTM D6304*	Magnesium	ppm	ASTM D5185(m)	0	0	0	0
Zinc ppm ASTM D5185(m) 0 3 2 3 Sulfur ppm ASTM D5185(m) 10 21 43 52 Lithium ppm ASTM D5185(m) 10 21 43 52 CONTAMINANTS method limit/base current history history Silicon ppm ASTM D5185(m) >25 1 <1 2 Sodium ppm ASTM D5185(m) >21 <1 <1 2 Sodium ppm ASTM D5185(m) >21 <1 <1 <1 2 Sodium ppm ASTM D5185(m) >20 <1 0 0 0 Water % ASTM D6304* >0.0601 0.026 0.012 0.004 ppm Water ppm ASTM D6304* >601 260.5 126.7 41.7	Calcium	ppm	ASTM D5185(m)	0	<1	<1	4
Sulfur ppm ASTM D5185(m) 10 21 43 52 Lithium ppm ASTM D5185(m) 10 21 43 52 Lithium ppm ASTM D5185(m) 10 21 43 52 CONTAMINANTS method limit/base current history history Silicon ppm ASTM D5185(m) >25 1 <1 2 Sodium ppm ASTM D5185(m) >21 <1 <1 <1 2 Potassium ppm ASTM D5185(m) >20 <1 0 0 Water % ASTM D6304* >0.0601 0.026 0.012 0.004 ppm Water ppm ASTM D6304* >601 260.5 126.7 41.7	Phosphorus	ppm	ASTM D5185(m)	270	267	238	226
Lithium ppm ASTM D5185(m) <1 <1 <1 CONTAMINANTS method limit/base current history 1 history Silicon ppm ASTM D5185(m) >25 1 <1	Zinc	ppm	ASTM D5185(m)		3	2	3
CONTAMINANTS method limit/base current history 1 history Silicon ppm ASTM D5185(m) >25 1 <1	Sulfur	ppm	ASTM D5185(m)	10	21	43	52
Silicon ppm ASTM D5185(m) >25 1 <1 2 Sodium ppm ASTM D5185(m) >21 <1 <1 <1 <1 Potassium ppm ASTM D5185(m) >20 <1 0 0 Water % ASTM D6304* >0.0601 0.026 0.012 0.004 ppm Water ppm ASTM D6304* >601 260.5 126.7 41.7	Lithium	ppm	ASTM D5185(m)		<1	<1	<1
Sodium ppm ASTM D5185(m) >21 <1	CONTAMINANTS		method	limit/base	current	history 1	history 2
Potassium ppm ASTM D5185(m) >20 <1 0 0 Water % ASTM D6304* >0.0601 0.026 0.012 0.004 ppm Water ppm ASTM D6304* >601 260.5 126.7 41.7	Silicon	ppm	ASTM D5185(m)	>25	1	<1	2
Water % ASTM D6304* >0.0601 0.026 0.012 0.004 ppm Water ppm ASTM D6304* >601 260.5 126.7 41.7	Sodium	ppm	ASTM D5185(m)	>21	<1	<1	<1
ppm Water ppm ASTM D6304* >601 260.5 126.7 41.7	Potassium	ppm	ASTM D5185(m)	>20	<1	0	0
• • •	Water	%	ASTM D6304*	>0.0601	0.026	0.012	0.004
FLUID DEGRADATION method limit/base current history 1 history	ppm Water	ppm	ASTM D6304*	>601	260.5	126.7	41.7
	FLUID DEGRADA		method	limit/base	current	history 1	history 2
Acid Number (AN) mg KOH/g ASTM D974* 0.03 🌲 6.04 🌲 3.17 🌲 1.55				0.00	<u> </u>		

4.000 2,000

220 210 200 200. 190. 180. 180. 180. 170. 160 150 140

OIL ANALYSIS REPORT

00

Fash Point (°C)

Aug24/00

		VISUAL		method	limit/base	current	history 1	history 2
	,	White Metal	scalar	Visual*	NONE	NONE	VLITE	NONE
		Yellow Metal	scalar	Visual*	NONE	NONE	NONE	NONE
	/	Precipitate	scalar	Visual*	NONE	NONE	NONE	NONE
\sim	- /	Silt	scalar	Visual*	NONE	NONE	NONE	VLITE
	\sim	Debris	scalar	Visual*	NONE	NONE	VLITE	VLITE
		Sand/Dirt	scalar	Visual*	NONE	NONE	NONE	NONE
2	/16	Appearance	scalar	Visual*	NORML	NORML	NORML	NORML
Jun17/1	Sep22/12 Apr19/16	Odor	scalar	Visual*	NORML	NORML	NORML	NORML
		Emulsified Water	scalar	Visual*	>0.0601	NEG	NEG	NEG
		Free Water		Visual*	>0.0001	NEG	NEG	NEG
			scalar		line it de come			
	/	FLUID PROPERT			limit/base		history 1	history 2
		Visc @ 40°C	cSt	ASTM D7279(m)	32.7	41.2	33.0	32.6
		COC Flash Point	°C	ASTM D92*	224	206	▲ 192	202
		SEDIMENT		method	limit/base		history 1	history 2
Jun17/11-	Sep22/12 -	Pentane Insolubles	%	ASTM D893(m)*		• 3.50	1.09	0.257
ηη	Ser	SIMULATED DISTILLAT	ON (GCD)	method	limit/base	current	history 1	history 2
ohy (GCD)		(GCD) % < 335°C	°C	ASTM D2887*	2.5	2.86	3.00	3.57
	فحاله على المراجع الم	(GCD) Initial Boiling Point	°C	ASTM D2887*		190.3	243.0	187.0
		(GCD) 5% Distillation Point	°C	ASTM D2887*		349.7	345.5	341.4
		(GCD) 10% Distillation Point	°C	ASTM D2887*	367	368.4	364.7	361.2
		(GCD) 20% Distillation Point	°C	ASTM D2887*		389.0	386.1	382.5
		(GCD) 30% Distillation Point	°C	ASTM D2887*		403.1	400.6	397.2
		(GCD) 40% Distillation Point	°C	ASTM D2887*		414.4	412.4	409.0
		(GCD) 50% Distillation Point		ASTM D2887*	421	424.9	423.3	419.8
Jun17/11	Sep22/12 Apr19/16	(GCD) 60% Distillation Point	°C	ASTM D2887*		435.7	434.5	430.7
ղոր	Sepi	(GCD) 70% Distillation Point		ASTM D2887*		448.2	446.8	442.6
		(GCD) 80% Distillation Point	°C	ASTM D2007 ASTM D2887*		464.1	461.8	456.3
		(GCD) 90% Distillation Point		ASTM D2887*	175	<u>489.0</u>	485.0	475.6
90%					475			
		(GCD) FBP% Distillation Point		ASTM D2887*		556.2	593.9	531.2
		SAMPLE IMAGES	5	method	limit/base	current	history 1	history 2
20	21 - 22 - 22 - 22 - 22 - 22 - 22 - 22 -	Color						
Time (min)		Bottom					6	
		Dottom						
	\sim							
	12							
Jun17/11	Sep22/12 Apr19/16							
	Laboratory	: WearCheck - C8-11			-	L7L 5H9		
	Laboratory Sample No.	: WC1234567	Received	:240	Oct 2022	L7L 5H9	1212	Logistics Inc
CALA CONTRACTOR SO 17025:2017	Laboratory Sample No. Lab Number	: WC1234567 F : 01234567 F	Received Diagnose	d : 24 0 ed : 16 1	Oct 2022 Nov 2022	L7L 5H9	1212	ndustrial Place Centerville, OF
CALA	Laboratory Sample No. Lab Number Unique Number	: WC1234567 F : 01234567 F : 12345678 F	Received Diagnose Diagnost	d : 24 (ed : 16 l ician : Ror	Oct 2022 Nov 2022 1 LeBlanc		1212	ndustrial Place Centerville, OF USA 75900
SO 17025:2017 Accredited Laboratory	Laboratory Sample No. Lab Number Unique Number Test Package	: WC1234567 F : 01234567 F : 12345678 F : HTTFL (Additional T	Received Diagnose Diagnose Tests: GC	ed : 24 (ed : 16 l ician : Ror C-PercFuel, \$	Oct 2022 Nov 2022 1 LeBlanc Spat, TAN M	<i>1</i> an)	1212 I Cont	ndustrial Place Centerville, Of USA 75900 act: Jim Ledue
CALA CONTRACTOR	Laboratory Sample No. Lab Number Unique Number Test Package s sample report,	: WC1234567 F : 01234567 F : 12345678 F	Received Diagnose Diagnose Tests: G(Ce at 1-8	ed : 24 (ed : 16 l ician : Ror C-PercFuel, \$ 00-268-213	Oct 2022 Nov 2022 1 LeBlanc Spat, TAN M 9.	1 an) jir	1212 I (Cont n.leduc@cusanylo	ndustrial Place Centerville, OF USA 75900 act: Jim Ledue