

[DEASE DEVINE / LSD 12-27-81-18W6] CREW ENERGY SEPTIMUS PLANT SK-500

Customer: PTRHTF20109

Crew Energy Septimus Plant

12-27-81-18W6

8043-100TH AVENUE

FORT ST.JOHN, BC V1J 1W2 Canada

Attn: Dease Devine Tel: (250)262-1957

E-Mail: deasedevine@crewenergy.com

System Information

System Volume: 18000 ltr

Bulk Operating Temp: 365F / 185C

Heating Source:

Blanket:

Fluid: ESSO TERESSO ISO 32

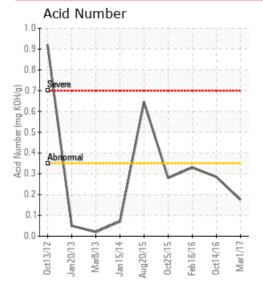
Make: NATCO

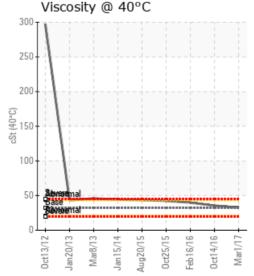
Sample Information

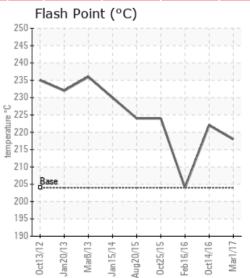
Lab No: 02131769

Analyst: Bill Quesnel CLS, OMA II, MLA-

III,LLA-I

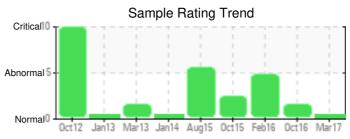

Sample Date: 03/01/17 Received Date: 03/10/17 Completed: 03/17/17

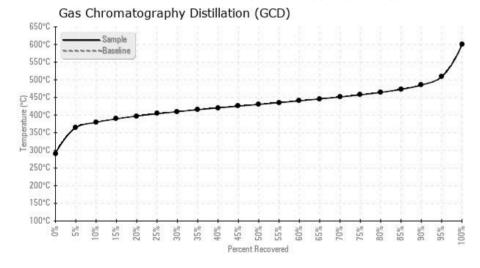

To discuss this report contact Bill

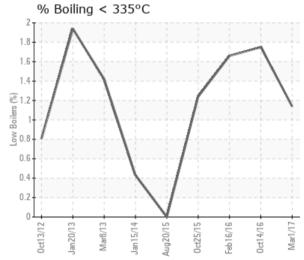

Recommendation: Resample at the next service interval to monitor.

Comments: The water content is negligible. There is no indication of any contamination in the component. The AN level is acceptable for this fluid. The condition of the fluid is suitable for further service.

Sample Date	Received Date	Fluid Age	Sample Location	Flash Point (COC)	Water (KF)	Viscosity (40°C)	Acid Number	Solids	GCD 10%	GCD 50%	300 GCD	GCD % < 335°C
	mm/dd/yy			°F/°C	ppm	cSt	mg/KOH/ g	%wt	°F/°C	°F/°C	°F/°C	%
03/01/17	03/10/17	5у	PUMP DISCHARGE	424 / 218	12.2	32.6	0.175	0.090	715 / 380	807 / 430	905 / 485	1.14
10/14/16	03/10/17	8y		432 / 222	249.3	35.5	0.285	0.224	720 / 382	819 / 437	924 / 495	1.75
02/16/16	02/25/16	0y	SK500	399 / 204	21.1	39.8	0.33	0.579	733 / 390	842 / 450	954 / 512	1.66
10/25/15	10/29/15	0y	12-27-81-18W6M	435 / 224	73.5	42.4	0.28	0.777	733 / 390	831 / 444	923 / 495	1.24
08/20/15	09/15/15	0y	PUMP SUCTION	435 / 224	117.7	43.6	0.645	0.802	748 / 398	841 / 449	931 / 499	0.00
01/15/14	01/23/14	0y	BEFORE PUMP	446 / 230	25.9	44.2	0.07	0.532	735 / 391	830 / 443	913 / 489	0.43
	399 / 204		32									







Sample Date	Iron	Chromium	Nickel	Aluminum	Copper	Lead	Tin	Cadmium	Silver	Vanadium	Silicon	Sodium	Potassium	Titanium	Molybdenum	Antimony	Manganese	Lithium	Boron	Magnesium	Calcium	Barium	Phosphorus	Zinc
03/01/17	16	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
10/14/16	18	0	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0
02/16/16	11	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0
10/25/15	57	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	0
08/20/15	107	0	0	0	0	0	0	2	0	0	1	0	1	0	0	0	1	0	3	0	2	0	0	1
01/15/14	66	0	0	0	0	0	0	2	0	0	1	0	1	0	0	0	1	0	1	0	2	0	1	1
Baseline Data			0	0						0			0	0					0				0	

Elemental analysis results (above) in parts per million (ppm). [10,000 ppm = 1.0%]

	Historical Comments
10/14/16	Resample at the next service interval to monitor. The water content is negligible. There is no indication of any contamination in the component. (GCD) 90% Distillation Point is marginally high. (GCD) 10% Distillation Point is marginally low. The AN level is acceptable for this fluid. The condition of the fluid is suitable for further service.
02/16/16	The GCD @90% indicating some heavier ends in the sample. Suspect some sludging is starting to form in the sample likely due to thermal cracking. This would also cause the increase in Pentane Insolubles. Still advising that you continue to monitor by sampling in 6 months time. Pentane Insolubles levels are severely high. (GCD) 90% Distillation Point is marginally high.
10/25/15	The GCD @90% indicating some heavier ends in the sample. Suspect some sludging is starting to form in the sample likely due to thermal cracking. This would also cause the increase in Pentane Insolubles. Continue to monitor. Pentane Insolubles levels are severely high. (GCD) 90% Distillation Point is marginally high.
08/20/15	The Acid number is abnormally high on this sample as is the GCD @90% indicating some heavier ends in the sample. Suspect some sludging is starting to form in the sample likely due to thermal cracking. This would also cause the increase in Pentane Insoluables. Pentane Insolubles levels are severely high. Acid Number (AN) is severely high. (GCD) 90% Distillation Point is abnormally high.
01/15/14	Pentane Insolubles levels are abnormally high.