

[DEASE DEVINE / LSD 12-27-81-18W6] CREW ENERGY SEPTIMUS PLANT SK-1500

Customer: PTRHTF20109

Crew Energy Septimus Plant

12-27-81-18W6

8043-100TH AVENUE

FORT ST.JOHN, BC V1J 1W2 Canada

Attn: Dease Devine Tel: (250)262-1957

E-Mail: deasedevine@crewenergy.com

System Information

System Volume: 24000 ltr

Bulk Operating Temp: 356F / 180C

Heating Source:

Blanket:

Fluid: SUNOCO SUN HEAT TRANSFER 21 PD

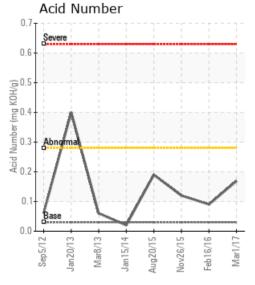
Make: NATCO

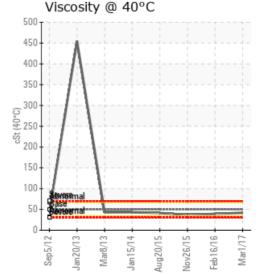
Sample Information

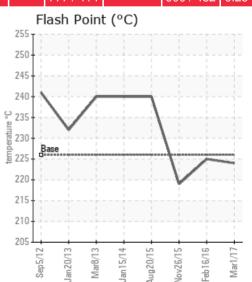
Lab No: 02131771

Analyst: Bill Quesnel CLS, OMA II, MLA-

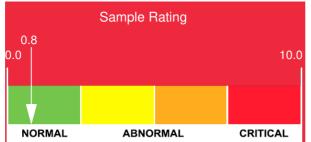
III,LLA-I

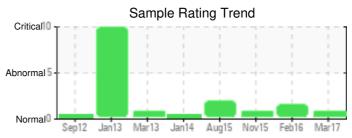

Sample Date: 03/01/17 Received Date: 03/10/17 Completed: 03/17/17

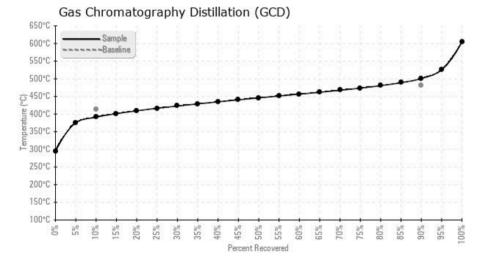

To discuss this report contact Bill

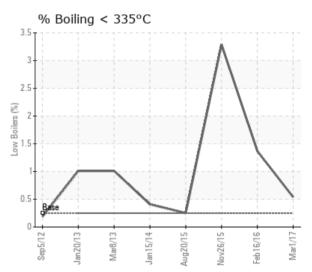

Recommendation: Resample at the next service interval to monitor.

Comments: The water content is negligible. There is no indication of any contamination in the component. (GCD) 90% Distillation Point is marginally high. The AN level is acceptable for this fluid. The condition of the fluid is suitable for further service.


Sample Date	Received Date	Fluid Age	Sample Location	Flash Point (COC)	Water (KF)	Viscosity (40°C)	Acid Number	Solids	GCD 10%	GCD 50%	GCD 90%	GCD % < 335°C
	mm/dd/yy			°F/°C	ppm	cSt	mg/KOH/ g	%wt	°F/°C	°F/°C	°F/°C	%
03/01/17	03/10/17	6у	PUMP DISCHARGE	435 / 224	8.6	41.9	0.169	0.366	736 / 391	835 / 446	933 / 501	0.54
02/16/16	02/25/16	0y	SK1500	437 / 225	21.2	39.2	0.09	0.438	732 / 389	834 / 446	925 / 496	1.37
11/26/15	12/03/15	2y	PUMP DISCHARGE	426 / 219	0.00	36.8	0.12	0.534	720 / 382	826 / 441	920 / 493	3.29
08/20/15	09/15/15	0y	PUMP SUCTION	464 / 240	0.00	41.4	0.19	0.265	740 / 393	843 / 450	959 / 515	0.25
01/15/14	01/23/14	0y	PUMP DISCHARGE	464 / 240	11.2	43.0	0.02	0.329	735 / 391	832 / 444	921 / 494	0.41
03/08/13	03/18/13	2y	BATH	464 / 240	0.00	42.5	0.06	0.406	734 / 390	829 / 443	927 / 497	1.01
	ı	Baseline	Data	439 / 226		50.0	0.03		777 / 414		900 / 482	0.25







Sample Date	Iron	Chromium	Nickel	Aluminum	Copper	Lead	Tin	Cadmium	Silver	Vanadium	Silicon	Sodium	Potassium	Titanium	Molybdenum	Antimony	Manganese	Lithium	Boron	Magnesium	Calcium	Barium	Phosphorus	Zinc
03/01/17	31	0	0	0	0	0	1	1	0	0	3	1	1	0	0	0	0	0	0	0	1	0	1	0
02/16/16	28	0	0	0	0	0	0	1	0	0	3	1	1	0	0	0	0	0	1	0	1	0	1	1
11/26/15	29	0	0	0	0	0	0	1	0	0	3	1	2	0	0	0	0	0	0	0	1	0	1	0
08/20/15	30	0	0	0	0	0	0	2	0	0	3	1	2	0	0	0	0	0	1	0	2	0	1	0
01/15/14	27	0	0	0	0	0	0	2	0	0	4	0	1	0	0	0	0	0	1	0	2	0	1	0
03/08/13	22	0	0	0	0	0	0	4	0	0	1	2	0	0	1	0	0	0	1	0	4	0	2	1
Baseline Data			0	0						0			0	0					0				0	

Elemental analysis results (above) in parts per million (ppm). [10,000 ppm = 1.0%]

	Historical Comments
02/16/16	(GCD) 90% Distillation Point is marginally high however is improved over previous sample. Pentane insoluables has stabilized. TAN and Viscosity continue to look good. Continue to operate and resample in 6 months. Pentane Insolubles levels are abnormally high. (GCD) 90% Distillation Point is marginally high.
11/26/15	(GCD) 90% Distillation Point is marginally high however is improved over previous sample. (GCD) 10% Distillation Point is marginally low. Pentane insoluables has risen slightly. TAN and Viscosity both look good. Continuew to operate and resample in 6 months. Pentane Insolubles levels are abnormally high. (GCD) 90% Distillation Point is marginally high. (GCD) 10% Distillation Point is marginally high.
08/20/15	GCD @90% is a little high indicating some heavier ends in the oil. TAN is starting to come up but still within Spec. (GCD) 90% Distillation Point is severely high.
01/15/14	
03/08/13	Solids are still a bit high but overall this sample looks quantum leap better than the last one. Keep sampling to monitor. Pentane Insolubles levels are abnormally high.