2 **CONSTRUCTION EQUIPMENT**

[[593756]] LIEBHERR HS8100 184996 - Left Track Drive

PETRO CANADA TRAXON 75W90 SYNTHETIC

Sample No: LH0284980

Oil Type:

Sample Number		LH0284980	LH0261249	LH0239658	LH
Sample Date		26 Jan 2024	04 May 2023	29 Jul 2022	23 Jul 2021
Machine Hours		12043	10190	8773	5818
Oil Hours		0	0	0	0
Oil Changed		N/A	Changed	N/A	N/A
Sample Status		SEVERE	SEVERE	SEVERE	NORMAL
	ONDITI	ON			
	cSt		0.00.0	0 101	
Visc @ 40°C	CSI	92.1	98.3	0 101	90.0
	TAMINA	TION			
Water	%	NEG	NEG	NEG	NEG
Silicon	ppm	607	380	347	51
Sodium	ppm	0 37	0 22	25	04
Potassium	ppm	53	0 35	33	6
~					
WEA	R META	LS			
			0 070	0.400	0 050
Iron	ppm	0 808	0 372	○ 460	250
Copper	ppm	0 47	0 48	0 70	36
Lead	ppm	01	01	02	01
Tin	ppm	02	03	5	02
Aluminum	ppm	0 143	93	9 0	0 14
Chromium	ppm	08	04	O 5	02
Molybdenum	ppm	○ <1	0 <1	○ <1	0
Nickel	ppm	○ 11	03	2	1
Titanium	ppm	7	6	6	1
Silver	ppm	0	0	0	0
Manganese	ppm	0 10	○ 5	6	6
Vanadium	ppm	<1	<1	<1	<1

Calcium	ppm	812	534	588	90
Magnesium	ppm	98	60	53	31
Zinc	ppm	22	0 18	25	25
Phosphorus	ppm	0 1220	0 1298	0 1159	0 1483
Barium	ppm	○ <1	○ <1	01	○ <1
Boron	ppm	246	215	0 147	27

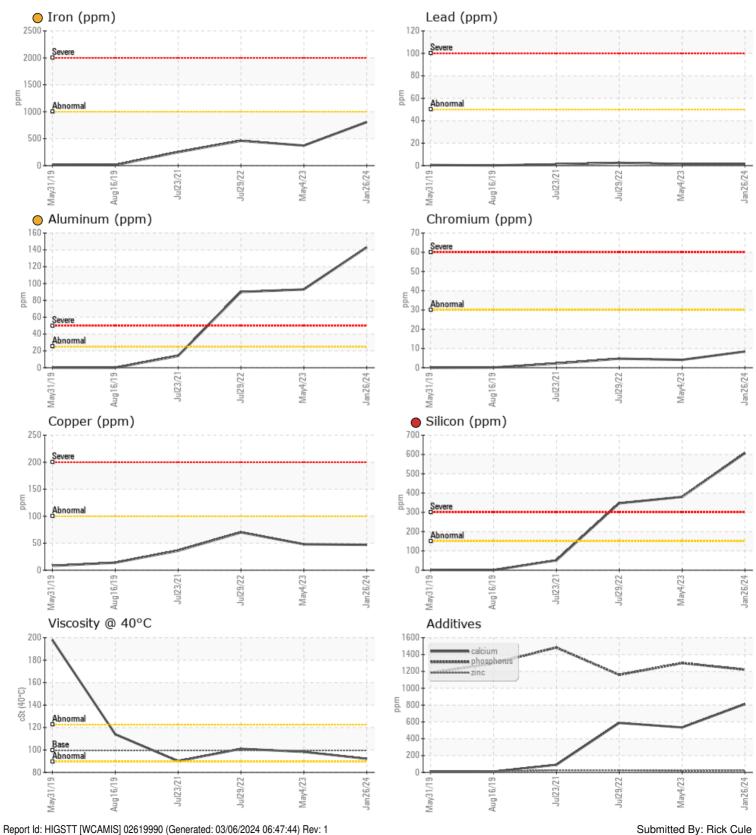
& HIGGS MAS, ON 3S8 Bernie Higgs

631-4095 31-2745

osis

ise that you check all areas dirt can enter the system. We nend that you drain the oil component if this has not been done. We advise that sh the component thoroughly re-filling with oil. Confirm the of the lubricant being utilized p/fill. We recommend an sample to monitor this n.Nickel ppm levels are al. Aluminum and iron ppm re noted. Elemental levels of Si) and aluminum (Al) alumina-silicate (coarse dirt) High amount of ingressed caused abrasive wear to the ent. Additive levels indicate ition of a different brand, or oil. The oil is no longer able as a result of the al and/or severe wear.

Depot:	HIGSTT
Unique No:	5737100
Signed:	Kevin Marson
Report Date:	06 Mar 2024


Submitted By: Rick Cule

GRAPHS

 \odot

