

No relevant graphs to display

RECOMMENDATION	PROBLEMATIC TEST RESULTS						
We advise that you check for visible metal particles in the fluid. The fluid change at the time of sampling has been noted. We recommend an early resample to monitor this condition.	Sample Status				ABNORMAL	NORMAL	SEVERE
	White Metal	scalar	Visual*	NONE	🔺 LIGHT	NONE	HEAVY
	PrtFilter					no image	

Customer Id: GFL286 Sample No.: PC0077037 Lab Number: 02578817 Test Package: IND 2

To manage this report scan the QR code

To discuss the diagnosis or test data: Kevin Marson +1 (289)291-4644 x4644 Kevin.Marson@wearcheck.com

To change component or sample information: Gloria Gonzalez +1 (289)291-4643 x4643 <u>gloria.gonzalez@wearcheck.com</u>

RECOMMENDED ACTIONS							
Action	Status	Date	Done By	Description			
Resample			?	We recommend an early resample to monitor this condition.			
Check For Visual Metal			?	We advise that you check for visible metal particles in the fluid.			

HISTORICAL DIAGNOSIS

27 Apr 2021 Diag: Kevin Marson

Resample at the next service interval to monitor.All component wear rates are normal. There is no indication of any contamination in the fluid. The condition of the fluid is acceptable for the time in service.

29 Mar 2021 Diag: Kevin Marson

We advise that you check for visible metal particles in the fluid. The fluid change at the time of sampling has been noted. We recommend an early resample to monitor this condition. Re-sampling is suggested to confirm test results prior to significant maintenance activities being performed. Please indicate that this is a resample on your Sample Information Form (SIF). The fluid was not specified, however, a fluid match indicates that this fluid is (GENERIC) TES SYN 295. Please confirm. High concentration of visible metal present. Gear wear is indicated. There is no indication of any contamination in the fluid. The AN level is acceptable for this fluid. The fluid is no longer serviceable as a result of the abnormal and/or severe wear.

OIL ANALYSIS REPORT

Sample Rating Trend

VISUAL METAL

DR180 - KDK

Component Transmission (Auto) Fluid PETRO CANADA ATF D3M (107 LTR)

DIAGNOSIS

Recommendation

We advise that you check for visible metal particles in the fluid. The fluid change at the time of sampling has been noted. We recommend an early resample to monitor this condition.

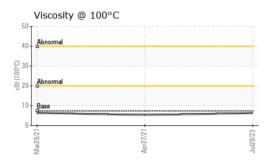
📥 Wear

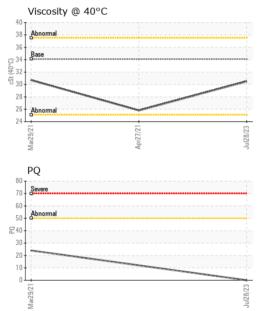
Light concentration of visible metal present. Gear wear is indicated.

Contamination

There is no indication of any contamination in the fluid.

Fluid Condition


The AN level is acceptable for this fluid. The fluid is no longer serviceable as a result of the abnormal and/or severe wear.


SAMPLE INFORM	IATION	method	limit/base	current	history1	history2
Sample Number		Client Info		PC0077037	PC0048366	PC0039682
Sample Date		Client Info		28 Jul 2023	27 Apr 2021	29 Mar 2021
Machine Age	hrs	Client Info		0	6996	6782
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		Changed	Not Changd	Changed
Sample Status				ABNORMAL	NORMAL	SEVERE
WEAR METALS	;	method	limit/base	current	history1	history2
PQ		ASTM D8184*	>50	0		24
Iron	ppm	ASTM D5185(m)	>160	56	35	94
	ppm	ASTM D5185(m)	>5	<1	<1	1
Nickel	ppm	ASTM D5185(m)	>5	<1	<1	<1
Titanium	ppm	ASTM D5185(m)		0	0	<1
	ppm	ASTM D5185(m)	>5	0	<1	0
	ppm	ASTM D5185(m)	>50	<1	<1	5
	ppm	ASTM D5185(m)	>50	<1	<1	<1
-	ppm	ASTM D5185(m)	>225	35	6	20
	ppm	ASTM D5185(m)		3	<1	2
	ppm	ASTM D5185(m)		0	0	<1
,	ppm	ASTM D5185(m)		0	0	0
	ppm	ASTM D5185(m)		0	0	0
	ppm	ASTM D5185(m)		0	0	0
	ppm			-	-	-
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185(m)	98	77	101	98
Barium	ppm	ASTM D5185(m)	<0.00	0	0	1
Molybdenum	ppm	ASTM D5185(m)		<1	<1	26
Manganese	ppm	ASTM D5185(m)		<1	<1	<1
Magnesium	ppm	ASTM D5185(m)	<1	4	4	5
Calcium	ppm	ASTM D5185(m)	70	73	74	84
Phosphorus	ppm	ASTM D5185(m)	220	277	232	225
Zinc	ppm	ASTM D5185(m)		21	15	13
Sulfur	ppm	ASTM D5185(m)	710	878	785	887
Lithium	ppm	ASTM D5185(m)		<1	2	<1
CONTAMINANT	S	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185(m)	>20	6	7	21
Sodium	ppm	ASTM D5185(m)		<1	<1	<1
Potassium	ppm	ASTM D5185(m)	>20	1	<1	1
FLUID CLEANLI	NESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>10000	123374		
Particles >6µm		ASTM D7647	>2500	44086		
Particles >14µm		ASTM D7647	>320	527		
Particles >21µm		ASTM D7647	>80	34		
Particles >38µm		ASTM D7647	>20	0		
Particles >71µm		ASTM D7647	>4	0		

OIL ANALYSIS REPORT

Acid Number		
B0.80		
Ê0.60		
g 0.40		
(a) 0.80 (b) 0.60 (b) 0.60 (c) 0.00 (c)		
0.00		
Mar29/21	Apr27/21	Jul28/23

FLUID DEGRAD	DATION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974*	0.81	0.71		0.63
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	Visual*	NONE	🔺 light	NONE	HEAVY
Yellow Metal	scalar	Visual*	NONE	VLITE	NONE	NONE
Precipitate	scalar	Visual*	NONE	NONE	NONE	NONE
Silt	scalar	Visual*	NONE	NONE	NONE	NONE
Debris	scalar	Visual*	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	Visual*	NONE	NONE	NONE	NONE
Appearance	scalar	Visual*	NORML	NORML	NORML	NORML
Odor	scalar	Visual*	NORML	NORML	NORML	NORML
Emulsified Water	scalar	Visual*	>0.1	NEG	NEG	NEG
Free Water	scalar	Visual*		NEG	NEG	NEG
FLUID PROPE	RTIES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D7279(m)	34.11	30.5	25.8	30.7
Visc @ 100°C	cSt	ASTM D7279(m)	7.37	6.3	5.3	6.4
Viscosity Index (VI)	Scale	ASTM D2270*	190	163	143	167
SAMPLE IMAG	iES	method	limit/base	current	history1	history2
Color						
Bottom						
PrtFilter					no image	

: WearCheck - C8-1175 Appleby Line, Burlington, ON L7L 5H9 Green Infrastructure and Partners Inc (GIPI) - 286 - Shoring & Foundations Laboratory CALA 151 Ram Forest Rd, Sample No. : PC0077037 Received : 28 Aug 2023 Lab Number : 02578817 Diagnosed : 31 Aug 2023 Stouffville, ON ISO 17025:2017 Accredited Laboratory Unique Number : 5631877 Diagnostician : Kevin Marson CA L4A 2G8 Test Package : IND 2 (Additional Tests: Bottom, BottomAnalysis, FilterPatch, KV100, PQ, PrtCount, TAN Man, VI) Contact: Shannon Abbott To discuss this sample report, contact Customer Service at 1-800-268-2131. sabbott@gipi.com Test denoted (*) outside scope of accreditation, (m) method modified, (e) tested at external lab. T: (905)750-5900 Validity of results and interpretation are based on the sample and information as supplied. F:

Contact/Location: Shannon Abbott - GFL286