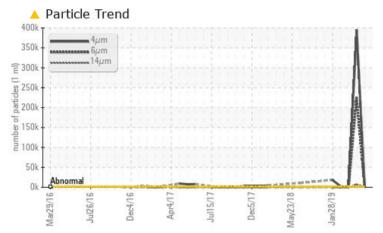


PROBLEM SUMMARY


Turret [450207944]

Circulation Tank Heat Transfer Fluid (WH-167891) (S/N Sample Tag: TB-16603 WH-167891)

Component Heat Transfer Fluid

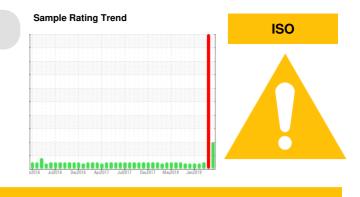
PETRO CANADA TURBOFLO EP 46 (800 LTR)

COMPONENT CONDITION SUMMARY

RECOMMENDATION

We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid. We recommend an early resample to monitor this condition.

PROBLEMATIC TE	ST RESULT	S			
Sample Status			ABNORMAL	SEVERE	NORMAL
Particles >4µm	ASTM D7647	>1300	<u> </u>	9394642	927
Particles >6µm	ASTM D7647	>320	6 582	226201	76
Particles >14µm	ASTM D7647	>40	<u> </u>	6757	4
Particles >21µm	ASTM D7647	>10	<u> </u>	621	1
Oil Cleanliness	ISO 4406 (c)	>17/15/12	18/16/14	26/25/20	17/13/9


Customer Id: TERHAM Sample No.: PC0076371 Lab Number: 02598434 Test Package: IND 2

To manage this report scan the QR code

To discuss the diagnosis or test data: Kevin Marson +1 (289)291-4644 x4644 Kevin.Marson@wearcheck.com

To change component or sample information: Gloria Gonzalez +1 (289)291-4643 x4643 gloria.gonzalez@wearcheck.com

RECOMMENDED ACTIONS								
Action	Status	Date	Done By	Description				
Change Filter			?	We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid.				
Resample			?	We recommend an early resample to monitor this condition.				
Filter Fluid			?	We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid.				

HISTORICAL DIAGNOSIS

18 Dec 2019 Diag: Kevin Marson

Check seals and/or filters for points of contaminant entry. We advise that you check all areas where contaminants can enter the system. We advise that you follow the water drain-off procedure for this component, and use off-line filtration to improve the cleanliness of the system fluid. The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather. Resample in 30-45 days to monitor this situation. All component wear rates are normal. Water contamination levels are severely high. Particles >14 µm are severely high. Particles >21 µm are severely high. Particles >6 µm are severely high. Particles >4 µm are severely high. There is a high concentration of water present in the fluid. The high sodium (Na) level indicates the possible presence of salt water. The system cleanliness code is much

higher than the acceptable limit for the target ISO 4406 cleanliness code. The AN level is acceptable for this fluid.

view report

05 Jul 2019 Diag: Kevin Marson

Resample at the next service interval to monitor. Lubritest recommends using HTTFL sample kits for heat transfer fluids. Please contact us at 1-800-268-2131 and provide a purchase order for \$245 + HST in order to conduct additional testing (boiling points @ 10%, 50%, and 90%, percent boiling < 335°C, and solids) to determine the suitability for continued use. Please contact your representative for information regarding the proper sampling kits for your service.All component wear rates are normal. The system cleanliness is acceptable for your target ISO 4406 cleanliness code. The system and fluid cleanliness is acceptable. The AN level is acceptable for this fluid. The condition of the fluid is suitable for further service.

11 Apr 2019 Diag: Kevin Marson

We recommend you service the filters on this component. We recommend an early resample to monitor this condition. Please specify the brand, type, and viscosity of the oil on your next sample. Lubritest recommends using HTTFL sample kits for heat transfer fluids. Please contact us at 1-800-268-2131 and provide a purchase order for \$245 + HST in order to conduct additional testing (boiling points @ 10%, 50%, and 90%, percent boiling < 335°C, and solids) to determine the suitability for continued use. Please contact your representative for information regarding the proper sampling kits for your service.All component wear rates are normal. Particles >4µm are notably high. The system cleanliness is above the acceptable limit for the target ISO 4406 cleanliness code. The AN level is acceptable for this fluid. The fluid is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.

OIL ANALYSIS REPORT

Area Turret [450207944]

Circulation Tank Heat Transfer Fluid (WH-167891) (S/N Sample Tag: TB-16603 WH-167891)

Component Heat Transfer Fluid

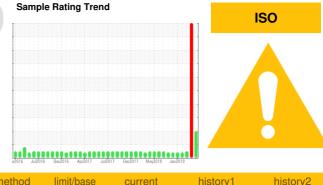
PETRO CANADA TURBOFLO EP 46 (800 LTR)

DIAGNOSIS

Recommendation

We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid. We recommend an early resample to monitor this condition.

Wear

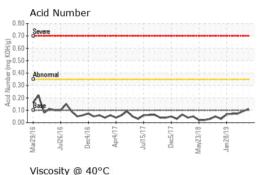

All component wear rates are normal.

Contamination

There is a moderate amount of particulates (2 to 100 microns in size) present in the fluid. The system cleanliness is above the acceptable limit for the target ISO 4406 cleanliness code.

Fluid Condition

The AN level is acceptable for this fluid. The fluid is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.



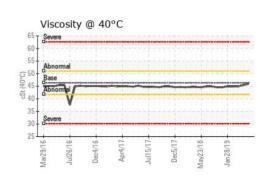
	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		PC0076371	PC	PC0011802
Sample Date		Client Info		09 Oct 2023	18 Dec 2019	05 Jul 2019
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				ABNORMAL	SEVERE	NORMAL
CONTAMINATI	ON	method	limit/base	current	history1	history2
Water		WC Method	>0.0601	NEG	NEG	NEG
WEAR METALS	S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185(m)	>200	0	<1	0
Chromium	ppm	ASTM D5185(m)	>21	0	0	0
Nickel	ppm	ASTM D5185(m)	>21	0	0	0
Titanium	ppm	ASTM D5185(m)	>21	0	0	0
Silver	ppm	ASTM D5185(m)	>21	<1	0	0
Aluminum	ppm	ASTM D5185(m)		0	0	0
Lead	ppm	ASTM D5185(m)	>21	0	0	<1
Copper	ppm	ASTM D5185(m)		<1	2	<1
Tin	ppm	ASTM D5185(m)	>21	0	0	0
Antimony	ppm	ASTM D5185(m)		0	<1	0
Vanadium	ppm	ASTM D5185(m)		0	0	0
Beryllium	ppm	ASTM D5185(m)		0	0	0
Cadmium	ppm	ASTM D5185(m)		0	0	0
ADDITIVES	ppin	method	limit/base	current		history2
Boron	nnm		IIIIII/Dase	<1	history1	0
BOIOII	ppm	ASTM D5185(m)			I	0
Derium	0.00	ACTM DE10E(m)		∩	.1	0
	ppm	ASTM D5185(m)		0	<1	0
Molybdenum	ppm	ASTM D5185(m)		0	2	0
Molybdenum Manganese	ppm ppm	ASTM D5185(m) ASTM D5185(m)		0 0	2 0	0
Molybdenum Manganese Magnesium	ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)		0 0 0	2 0 2	0 0 <1
Molybdenum Manganese Magnesium Calcium	ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)		0 0 0 <1	2 0 2 2	0 0 <1 <1
Molybdenum Manganese Magnesium Calcium Phosphorus	ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	280	0 0 0 <1 275	2 0 2 2 173	0 0 <1 <1 241
Barium Molybdenum Manganese Magnesium Calcium Phosphorus Zinc	ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)		0 0 0 <1 275 2	2 0 2 2 173 5	0 0 <1 <1 241 1
Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur	ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)		0 0 0 <1 275	2 0 2 2 173	0 0 <1 <1 241 1 600
Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium	ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)		0 0 0 <1 275 2	2 0 2 2 173 5	0 0 <1 <1 241 1
Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur	ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)		0 0 <1 275 2 699	2 0 2 2 173 5 348	0 0 <1 <1 241 1 600
Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINAN	ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0.0	0 0 <1 275 2 699 <1	2 0 2 173 5 348 1	0 0 <1 241 1 600 0
Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINAN ^T Silicon	ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0.0 limit/base	0 0 275 2 699 <1 current	2 0 2 173 5 348 1 history1	0 0 <1 241 1 600 0 history2
Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium	ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0.0 limit/base >25	0 0 275 2 699 <1 current 0	2 0 2 173 5 348 1 <u>history1</u> <1	0 0 <1 241 1 600 0 history2 <1
Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINAN Silicon Sodium	ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0.0 limit/base >25 >21	0 0 - 1 275 2 699 <1 current 0 1	2 0 2 2 173 5 348 1 1 history1 <1 ▲ 15	0 0 <1 241 1 600 0 history2 <1 0
Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINAN Silicon Sodium Potassium FLUID CLEANL	ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0.0 limit/base >25 >21 >20	0 0 275 2 699 <1 current 0 1 <1	2 0 2 2 173 5 348 1 1 <u>history1</u> <1 ▲ 15 <1	0 0 <1 241 1 600 0 <u>history2</u> <1 0 1
Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINAN Silicon Sodium Potassium FLUID CLEANL Particles >4µm	ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m)	0.0 limit/base >25 >21 >20 limit/base	0 0 (1 275 2 699 <1 current 0 1 <1 <1	2 0 2 2 173 5 348 1 1 <u>history1</u> <1 15 <1 1 history1	0 0 <1 241 1 600 0 history2 <1 0 1 history2
Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINAN ^T Silicon Sodium Potassium	ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m)	0.0 limit/base >25 >21 >20 limit/base >1300	0 0 275 2 699 <1 0 1 1 <1 2 0 1 2 699 3 1 2 0 1 1 2 0 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1	2 0 2 2 173 5 348 1 1 history1 < 15 <1 <1 5 348 1 1 < 15 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	0 0 <1 241 1 600 0 history2 <1 0 1 history2 927
Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINAN Silicon Sodium Potassium FLUID CLEANL Particles >4µm Particles >14µm	ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m)	0.0 limit/base >25 >21 >20 limit/base >1300 >320	0 0 0 <1 275 2 699 <1 current 0 1 <1 <1 <1 <1 ×1 ×1 ×1391 ▲ 1391	2 0 2 2 173 5 348 1 1 ∧ history1 <1 <1 ↓ 15 <1 ↓ 15 <1 ↓ 15 <1 ↔	0 0 <1 241 1 600 0 history2 <1 0 1 1 history2 927 76
Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINAN Silicon Sodium Potassium FLUID CLEANL Particles >4µm Particles >6µm Particles >14µm Particles >21µm	ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D76477 ASTM D7647	0.0 limit/base >25 >21 >20 limit/base >1300 >320 >40	0 0 0 <1 275 2 699 <1 current 0 1 <1 <1 <1 <1 ×1 ×1 ×1391 × 582 × 91	2 0 2 2 173 5 348 1	0 0 <1 241 1 600 0 history2 <1 0 1 1 history2 927 76 4
Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINAN Silicon Sodium Potassium FLUID CLEANL Particles >4µm Particles >6µm Particles >14µm Particles >21µm Particles >38µm	ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D76477 ASTM D76477 ASTM D76471	0.0 limit/base >25 >21 >20 limit/base >1300 >320 >40 >10	0 0 0 <1 275 2 699 <1 current 0 1 <1 <1 current 1 391 ▲ 1391 ▲ 582 ④ 91 ▲ 24	2 0 2 2 173 5 348 1	0 0 <1 241 1 600 0 0 history2 <1 0 1 1 history2 927 76 4 1
Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINAN Silicon Sodium Potassium FLUID CLEANL Particles >4µm Particles >6µm Particles >14µm Particles >21µm	ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D7647 ASTM D7647 ASTM D7647 ASTM D7647 ASTM D7647	0.0 limit/base >25 >21 >20 limit/base >1300 >320 >40 >10 >3	0 0 0 <1 275 2 699 <1 <1 current 0 1 <1 <1 <1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1 ×1	2 0 2 2 173 5 348 1 1 history1 <1 <1 <1 15 <1 15 <1 0 0 226201 0 0 6757 ● 621 3	0 0 <1 <1 241 1 600 0 0 history2 <1 0 1 1 history2 927 76 4 1 0

OIL ANALYSIS REPORT

491,520 Τ	irticle C	ount				T ²⁶
122,880						-24
30,720 Seve	re .					-22 8
7,680						-20 4406
30,720 Seve 7,680 1,920 Abn 480 5 120 - 30 - 8 48	ormal					-22 80 4406:1999 Cleanliness -18 1999 Cleanliness -14 112 12 20 0de -10 0de
480-		-	-			-16 0
120-						-14
30-			-			-12 8
8-						10 8
2-					-	-8
0 4µ	6µ		14µ	21µ	 38µ	71µ
350k - (10 300k - 300k - 30	4μτ 6μτ 14μ	n				
5 100k						
	normal				 	



5				
0 - Base	ormal	 	 	
Base		 	 	
0-	V	 +	 	
5-	- h h h h h h	 		
Seve	sre	 	 	


FLUID DEGRAD		method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974*	.10	0.11	0.093	0.072
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	Visual*	NONE	NONE	NONE	NONE
Yellow Metal	scalar	Visual*	NONE	NONE	NONE	NONE
Precipitate	scalar	Visual*	NONE	NONE	NONE	NONE
Silt	scalar	Visual*	NONE	NONE	LIGHT	NONE
Debris	scalar	Visual*	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	Visual*	NONE	NONE	NONE	NONE
Appearance	scalar	Visual*	NORML	NORML	🔺 HAZY	NORML
Odor	scalar	Visual*	NORML	NORML	NORML	NORML
Emulsified Water	scalar	Visual*	>0.0601	NEG	.2%	NEG
Free Water	scalar	Visual*		NEG	NEG	NEG
FLUID PROPE	RTIES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D7279(m)	46.37	46.0	45.4	44.9
SAMPLE IMAG	ES	method	limit/base	current	history1	history2

Color

Bottom

GRAPHS

Suncor - Terra Nova Projects Scotia Centre, 235 Water Strret St. John`s, NL CA A1C 1B6 Contact: Josh Hynes joshynes@suncor.com T: (709)778-3575 F: (709)724-2835

Sample No. : PC0076371 Received : 23 Nov 2023 Lab Number : 02598434 Diagnosed : 24 Nov 2023 ISO 17025:2017 Accredited Laboratory Unique Number : 5683514 Diagnostician : Kevin Marson Test Package : IND 2 (Additional Tests: PrtCount, TAN Man) To discuss this sample report, contact Customer Service at 1-800-268-2131. Test denoted (*) outside scope of accreditation, (m) method modified, (e) tested at external lab. Validity of results and interpretation are based on the sample and information as supplied.

: WearCheck - C8-1175 Appleby Line, Burlington, ON L7L 5H9

CALA

Laboratory

Contact/Location: Josh Hynes - TERHAM