

OIL ANALYSIS REPORT

Sample Rating Trend

Component Diesel Engine

PETRO CANADA DURON SHP 15W40 (--- GAL)

			1ar2014 J	uizuis mayzui6 A	przuti Junzu20 Oct2022	1602024	
	SAMPLE INFOR	RMATION	method	limit/base	current	history1	history2
	Sample Number		Client Info		GFL0113169	GFL0113173	GFL0085246
ection system.	Sample Date		Client Info		13 Mar 2024	28 Feb 2024	21 Jun 2023
g has been nple to	Machine Age	hrs	Client Info		183800	183252	7985
	Oil Age	hrs	Client Info		0	0	152862
	Oil Changed		Client Info		Changed	Changed	N/A
	Sample Status				SEVERE	SEVERE	SEVERE
	CONTAMINA	TION	method	limit/base	current	history1	history2
nt in the oil. the oil.	Water		WC Method	>0.2	NEG	NEG	NEG
	Glycol		WC Method		NEG	NEG	0.0
na the	WEAR METAI	S	method	limit/base	current	history1	history2
able due to the	Iron	ppm	ASTM D5185(m)	>90	13	36	25
	Chromium	ppm	ASTM D5185(m)	>20	<1	2	3
	Nickel	ppm	ASTM D5185(m)	>2	<1	<1	<1
	Titanium	ppm	ASTM D5185(m)	>2	0	0	0
	Silver	ppm	ASTM D5185(m)	>2	0	0	1
	Aluminum	ppm	ASTM D5185(m)	>20	2	3	4
	Lead	ppm	ASTM D5185(m)	>40	0	0	<1
	Copper	ppm	ASTM D5185(m)	>330	<1	<1	<1
	Tin	ppm	ASTM D5185(m)	>15	0	0	0
	Antimony	ppm	ASTM D5185(m)		0	0	0
	Vanadium	ppm	ASTM D5185(m)		0	0	0
	Beryllium	ppm	ASTM D5185(m)		0	0	0
	Cadmium	ppm	ASTM D5185(m)		0	0	0
	ADDITIVES		method	limit/base	current	history1	history2
	Boron	ppm	ASTM D5185(m)	0	4	4	3
	Barium	ppm	ASTM D5185(m)	0	0	0	0
	Molybdenum	ppm	ASTM D5185(m)	60	54	53	52
	Manganese	ppm	ASTM D5185(m)	0	0	0	<1
	Magnesium	ppm	ASTM D5185(m)	1010	861	814	858
	Calcium	ppm	ASTM D5185(m)	1070	959	921	928
	Phosphorus	ppm	ASTM D5185(m)	1150	941	891	973
	Zinc	ppm	ASTM D5185(m)	1270	1079	1035	1050
	Sulfur	ppm	ASTM D5185(m)	2060	2536	2387	2344
	Lithium	ppm	ASTM D5185(m)		<1	<1	<1
	CONTAMINA	NTS	method	limit/base	current	history1	history2
	Silicon	ppm	ASTM D5185(m)	>25	2	4	4
	Sodium	ppm	ASTM D5185(m)		8	26	6 166
	Potassium	ppm	ASTM D5185(m)	>20	1	1	2
	Fuel	%	ASTM D7593*	>3.0	6 .3	▲ 9.1	▲ 10.4
	INFRA-RED		method	limit/base	current	history1	history2
	Soot %	%	ASTM D7844*	>6	0.3	1	0.4
	Nitration	Abs/cm	ASTM D7624*	>20	6.5	9.2	7.1
	Sulfation	Abs/.1mm	ASTM D7415*	>30	19.0	20.7	18.6

DIAGNOSIS Recommendation

We advise that you check the fuel injection system. The oil change at the time of sampling has been noted. We recommend an early resample to monitor this condition.

Machine Id 8982

Wear

All component wear rates are normal.

Contamination

There is a high amount of fuel present in the oil. Tests confirm the presence of fuel in the oil.

Fluid Condition

Fuel is present in the oil and is lowering the viscosity. The oil is no longer serviceable due to the presence of contaminants.

OIL ANALYSIS REPORT

To discuss this sample report, contact Customer Service at 1-800-268-2131. Test denoted (*) outside scope of accreditation, (m) method modified, (e) tested at external lab. Validity of results and interpretation are based on the sample and information as supplied.

Report Id: GFL225 [WCAMIS] 02622252 (Generated: 03/22/2024 15:09:24) Rev: 1

CALA

ISO 17025:2017 Accredited

Laboratory

Laboratory

Sample No.

F: