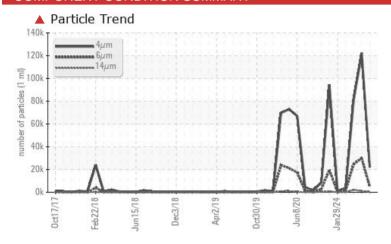
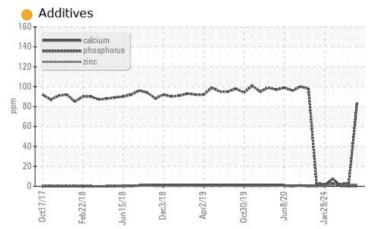

PROBLEM SUMMARY

Gas Compression [450305175]


Compressor (HP2) - Lubrication System (S/N Sample Tag XX-23004-S1)


Lube System

PETRO CANADA TURBOFLO XL32 (10350 LTR)

COMPONENT CONDITION SUMMARY

RECOMMENDATION

We advise that you check all areas where contaminants can enter the system. We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid. The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather. Confirm the source of the lubricant being utilized for top-up/fill. Resample in 30-45 days to monitor this situation. The fluid was specified as PETRO CANADA TURBOFLO XL32, however, a fluid match indicates that this fluid is ISO 32 R&O Hydraulic Oil. Please confirm the oil type and grade on your next sample. Please contact your representative for information regarding the proper sampling kits for your service. NOTE: We recommend using MAR 3 test kits, this testkit includes Analytical Ferrography which provides a detailed morphological analysis of wear particles present in the fluid.

Customer Id: TERHAM Sample No.: PC0078288 Lab Number: 02631969 Test Package: MAR 2

To manage this report scan the QR code

To discuss the diagnosis or test data: Kevin Marson +1 (289)291-4644 x4644 Kevin.Marson@wearcheck.com

To change component or sample information: Gloria Gonzalez +1 (289)291-4643 x4643 gloria.gonzalez@wearcheck.com

PROBLEMATIC TEST RESULTS								
Sample Status			SEVERE	SEVERE	SEVERE			
Particles >6µm	ASTM D7647	>320	▲ 5126	▲ 30044	4 24570			
Particles >14μm	ASTM D7647	>40	▲ 352	1 148	1 988			
Particles >21µm	ASTM D7647	>10	A 89	▲ 278	620			
Particles >38µm	ASTM D7647	>3	<u> </u>	<u> </u>	▲ 57			
Oil Cleanliness	ISO 4406 (c)	>/15/12	22/20/16	4 24/22/17	4 24/22/18			

RECOMMENDED ACTIONS								
Action	Status	Date	Done By	Description				
Change Filter			?	We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid.				
Resample			?	Resample in 30-45 days to monitor this situation.				
Contact Required			?	Please contact your representative for information regarding the proper sampling kits for your service.				
Alert			?	The fluid was specified as PETRO CANADA TURBOFLO XL32, however, a fluid match indicates that this fluid is ISO 32 R&O Hydraulic Oil. Please confirm the oil type and grade on your next sample.				
Check Breathers			?	The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather.				
Check Dirt Access			?	We advise that you check all areas where contaminants can enter the system.				
Check Fluid Source			?	Confirm the source of the lubricant being utilized for top-up/fill.				
Filter Fluid			?	We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid.				

HISTORICAL DIAGNOSIS

29 Mar 2024 Diag: Kevin Marson

We advise that you check all areas where contaminants can enter the system. We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid. The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather. Resample in 30-45 days to monitor this situation. Please contact your representative for information regarding the proper sampling kits for your service. NOTE: We recommend using MAR 3 test kits, this testkit includes Analytical Ferrography which provides a detailed morphological analysis of wear particles present in the fluid.Component wear rates appear to be normal (unconfirmed). There is a high amount of particulates (2 to 100 microns in size) present in the oil. The system cleanliness code is much higher than the acceptable limit for the target ISO 4406 cleanliness code. The AN level is acceptable for this fluid. The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.

ISO

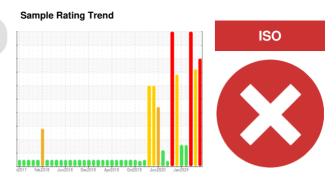
01 Mar 2024 Diag: Bill Quesnel

We advise that you check all areas where contaminants can enter the system. We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid. The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather. Resample in 30-45 days to monitor this situation. No other corrective action is recommended at this time. Diagnostician's Note: The debris on the bottom of the sample combined with the ferrous red & black oxides present in the ferrogram indicate this was an improperly taken sample (dead pipe line, or low on the bottom of the reservoir). There was a very light amount of insoluble material present. Suggest taking a resample from a suitable sampling port to validate the results before taking any serious maintenance actions. Wear particle analysis indicates that the ferrous black oxides and ferrous red oxides particles are marginal. All other component wear rates are normal. There is a high amount of particulates (2 to 100 microns in size) present in the oil. MPC (Membrane Patch Colorimetry) test indicates a light concentration of varnish present. The water content is negligible. The system cleanliness code is much higher than the acceptable limit for the target ISO 4406 cleanliness code. The AN level is acceptable for this fluid. The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.

ISO

08 Feb 2024 Diag: Kevin Marson

We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid. We recommend an early resample to monitor this condition. Please contact your representative for information regarding the proper sampling kits for your service. NOTE: We recommend using MAR 3 test kits, this testkit includes Analytical Ferrography which provides a detailed morphological analysis of wear particles present in the fluid.Component wear rates appear to be normal (unconfirmed). There is a moderate amount of particulates (2 to 100 microns in size) present in the oil. The system cleanliness is above the acceptable limit for the target ISO 4406 cleanliness code. The AN level is acceptable for this fluid. The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.


OIL ANALYSIS REPORT

Gas Compression [450305175]

Compressor (HP2) - Lubrication System (S/N Sample Tag XX-23004-S1)

Lube System

PETRO CANADA TURBOFLO XL32 (10350 LTR)

DIAGNOSIS

Recommendation

We advise that you check all areas where contaminants can enter the system. We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid. The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather. Confirm the source of the lubricant being utilized for top-up/fill. Resample in 30-45 days to monitor this situation. The fluid was specified as PETRO CANADA TURBOFLO XL32, however, a fluid match indicates that this fluid is ISO 32 R&O Hydraulic Oil. Please confirm the oil type and grade on your next sample. Please contact your representative for information regarding the proper sampling kits for your service. NOTE: We recommend using MAR 3 test kits, this testkit includes Analytical Ferrography which provides a detailed morphological analysis of wear particles present in the fluid.

Wear

Component wear rates appear to be normal (unconfirmed).

Contamination

There is a high amount of particulates (2 to 100 microns in size) present in the oil. The system cleanliness code is much higher than the acceptable limit for the target ISO 4406 cleanliness code.

Fluid Condition

Additive levels indicate the addition of a different brand, or type of oil. The AN level is acceptable for this fluid. The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.

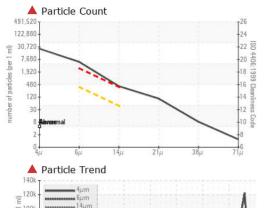
SAMPLE INFORI	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		PC0078288	PC0081649	PC0082750
Sample Date		Client Info		02 Apr 2024	29 Mar 2024	01 Mar 2024
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				SEVERE	SEVERE	SEVERE
CONTAMINAT	ION	method	limit/base	current	history1	history2
Water		WC Method	>0.05	NEG	NEG	NEG
WEAR METAL	S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185(m)	>20	0	<1	<1
Chromium	ppm	ASTM D5185(m)	>10	0	0	0
Nickel	ppm	ASTM D5185(m)	>10	0	0	<1
Titanium	ppm	ASTM D5185(m)		0	0	0
Silver	ppm	ASTM D5185(m)		0	0	0
Aluminum	ppm	ASTM D5185(m)	>10	0	0	<1
Lead	ppm	ASTM D5185(m)	>20	0	0	0
Copper	ppm	ASTM D5185(m)	>20	<1	0	0
Tin	ppm	ASTM D5185(m)	>10	0	0	0
Antimony	ppm	ASTM D5185(m)		0	0	0
Vanadium	ppm	ASTM D5185(m)		0	0	0
Beryllium	ppm	ASTM D5185(m)		0	0	0
Cadmium	ppm	ASTM D5185(m)		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185(m)	0	0	0	0
Barium	ppm	ASTM D5185(m)	0	0	0	0
Molybdenum	ppm	ASTM D5185(m)	0	0	0	0
Manganese	ppm	ASTM D5185(m)	0	0	0	0
Magnesium	ppm	ASTM D5185(m)	0	<1	0	<1
Calcium	ppm	ASTM D5185(m)		<1	0	<1
Phosphorus	ppm	ASTM D5185(m)	5	<u>82</u>	3	2
Zinc	ppm	ASTM D5185(m)		2	2	<1
Sulfur	ppm	ASTM D5185(m)	750	256	607	667
Lithium	ppm	ASTM D5185(m)		<1	<1	<1
CONTAMINAN	TS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185(m)	>15	<1	0	<1
Sodium	ppm	ASTM D5185(m)		<1	0	0
Potassium	ppm	ASTM D5185(m)	>20	0	0	<1
FLUID CLEANI	INESS	method	limit/base	current	history1	history2
I LOID OLLAIVE						
Particles >4µm		ASTM D7647		21967	122408	80490
Particles >4μm Particles >6μm		ASTM D7647 ASTM D7647	>320	21967 △ 5126	122408 1 30044	80490 △ 24570
Particles >4μm Particles >6μm Particles >14μm			>320 >40	▲ 5126 ▲ 352	▲ 30044 ▲ 1148	
Particles >4μm Particles >6μm		ASTM D7647	>40	▲ 5126	▲ 30044	2 4570

Particles >71µm

Oil Cleanliness

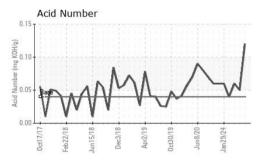
ASTM D7647 >3

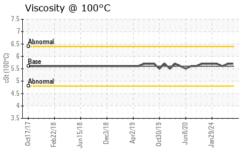
ISO 4406 (c) >--/15/12 **A 22/20/16**


4 24/22/18

4 24/22/17

Contact/Location: Josh Hynes - TERHAM




OIL ANALYSIS REPORT

100k -		μm 4μm					. /
80k -	delete be						11
60k -						1	AL
40k -						11	111
20k -	Λ.					N	W
0k	- (m)		00	6	6	- 2	<u> </u>
0ct17/17	Feb22/18	Jun15/18	Dec3/18	Apr2/19	Oct30/19	Jun8/20	Jan29/24

Add	litives							
140-		cium osphorus	HHH					
	manana Zill		JHH					
100	17.	- Andrews		-	- Markey	A STREET, STRE	1	
E 80-	A						10000	1
60-							1	1
40								1
20								1
0								- P
7/17	2/18	5/18	Dec3/18	Apr2/19	Oct30/19	Jun8/20	9/24	
Oct17/17	Feb22/18	Jun15/18	Dec	Apr	Oct3	Ę	Jan29/24	
		,						

FLUID DEGRAD	NOITAC	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974*	0.04	0.12	0.05	0.06
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	Visual*	NONE	NONE	NONE	NONE
Yellow Metal	scalar	Visual*	NONE	NONE	NONE	NONE
Precipitate	scalar	Visual*	NONE	NONE	NONE	NONE
Silt	scalar	Visual*	NONE	NONE	NONE	NONE
Debris	scalar	Visual*	NONE	NONE	NONE	LIGHT
Sand/Dirt	scalar	Visual*	NONE	NONE	VLITE	NONE
Appearance	scalar	Visual*	NORML	NORML	NORML	NORML
Odor	scalar	Visual*	NORML	NORML	NORML	NORML
Emulsified Water	scalar	Visual*	>0.05	NEG	NEG	NEG
Free Water	scalar	Visual*		NEG	NEG	NEG
FLUID PROPE	RTIES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D7279(m)	33.86	33.8	33.8	33.9
Visc @ 100°C	cSt	ASTM D7279(m)	5.60	5.7	5.7	5.6
Viscosity Index (VI)	Scale	ASTM D2270*	101	108	108	102
SAMPLE IMAG	ES	method	limit/base	current	history1	history2
				FINE WAY		
Color					HOUSE	

Color			A OLL	
Bottom				
MPC		no image	no image	

CALA ISO 17025:2017 Accredited Laboratory

Laboratory Sample No.

Lab Number : 02631969 Unique Number : 5773122

: WearCheck - C8-1175 Appleby Line, Burlington, ON L7L 5H9 : PC0078288 Received : 29 Apr 2024

Tested : 30 Apr 2024 Diagnosed : 01 May 2024 - Kevin Marson

Test Package : MAR 2 (Additional Tests: KV100, TAN Man, VI) To discuss this sample report, contact Customer Service at 1-800-268-2131. Test denoted (*) outside scope of accreditation, (m) method modified, (e) tested at external lab. **Suncor - Terra Nova Projects** Scotia Centre, 235 Water Strret

St. John's, NL CA A1C 1B6 Contact: Josh Hynes joshynes@suncor.com T: (709)778-3575

F: (709)724-2835