

Area

OIL ANALYSIS REPORT

Water Injection

Pump Sea Water Injection (B) - Lube System (S/N Sample Tag PA-29002B-S1)

PETRO CANADA TURBOFLO 46 (1264 LTR)

DIAGNOSIS

Recommendation

We recommend you service the filters on this component. We recommend an early resample to monitor this condition. Please contact your representative for information regarding the proper sampling kits for your service. NOTE: We recommend using MAR 3 test kits, this testkit includes Analytical Ferrography which provides a detailed morphological analysis of wear particles present in the fluid.

Wear

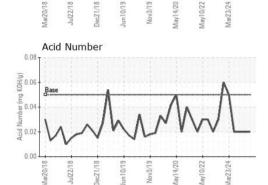

Component wear rates appear to be normal (unconfirmed).

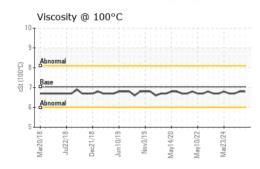
Contamination

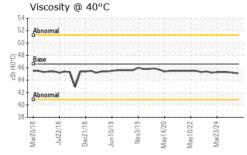
There is a moderate amount of silt (particulates < 14 microns in size) present in the oil. The system cleanliness is above the acceptable limit for the target ISO 4406 cleanliness code.

Fluid Condition

The AN level is acceptable for this fluid. The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.




SAMPLE INFOR	RMATION	method	limit/base	current	history1	history2
Sample Number		Client Info		PC	PC0052479	PC
Sample Date		Client Info		29 May 2024	25 May 2024	28 Apr 2024
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				ABNORMAL	NORMAL	NORMAL
CONTAMINA	ΓΙΟΝ	method	limit/base	current	history1	history2
Water		WC Method	>.1	NEG	NEG	NEG
WEAR METAI	_S	method	limit/base	current	history1	history2
PQ		ASTM D8184*		0	0	0
Iron	ppm	ASTM D5185(m)	>75	0	0	0
Chromium	ppm	ASTM D5185(m)	>5	0	0	0
Nickel	ppm	ASTM D5185(m)		<1	<1	0
Titanium	ppm	ASTM D5185(m)		0	0	0
Silver	ppm	ASTM D5185(m)		0	0	0
Aluminum	ppm	ASTM D5185(m)	>5	<1	<1	0
Lead	ppm	ASTM D5185(m)	>10	0	0	0
Copper	ppm	ASTM D5185(m)	>15	<1	<1	<1
Tin	ppm	ASTM D5185(m)		0	0	0
Antimony	ppm	ASTM D5185(m)		0	0	0
Vanadium	ppm	ASTM D5185(m)		0	0	0
Beryllium	ppm	ASTM D5185(m)		0	0	0
Cadmium	ppm	ASTM D5185(m)		0	0	0
ADDITIVES						
		method	limit/base	current	history1	history2
	ppm	ASTM D5185(m)	limit/base	current <1	history1 <1	history2 <1
Boron	ppm ppm		0			
Boron Barium		ASTM D5185(m)	0	<1	<1	<1
Boron Barium Molybdenum	ppm	ASTM D5185(m) ASTM D5185(m)	0 0 0	<1 0	<1 0	<1 0
Boron Barium Molybdenum Manganese	ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0	<1 0 0	<1 0 0 0 0	<1 0 0 0 <1
Boron Barium Molybdenum Manganese Magnesium	ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0 0	<1 0 0 0	<1 0 0 0	<1 0 0 0
Boron Barium Molybdenum Manganese Magnesium Calcium	ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0	<1 0 0 0 0	<1 0 0 0 0	<1 0 0 0 <1
Boron Barium Molybdenum Manganese Magnesium Calcium Phosphorus	ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0 0	<1 0 0 0 0 <1	<1 0 0 0 0 0 0	<1 0 0 <1 0
Boron Barium Molybdenum Manganese Magnesium Calcium Phosphorus Zinc	ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0 0 110	<1 0 0 0 0 <1 166	<1 0 0 0 0 0 0 164	<1 0 0 <1 0 171
Boron Barium Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur	ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0 0 110	<1 0 0 0 0 <1 166 <1	<1 0 0 0 0 0 164 <1	<1 0 0 <1 0 171 <1
Boron Barium Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur	ppm ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0 0 110	<1 0 0 0 <1 166 <1 318	<1 0 0 0 0 0 164 <1 317	<1 0 0 <1 0 171 <1 413
Boron Barium Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium	ppm ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0 110 0.0	<1 0 0 0 <1 166 <1 318 <1	<1 0 0 0 0 0 164 <1 317 <1	<1 0 0 <1 0 171 <1 413 <1
Boron Barium Molybdenum Manganese Magnesium Calcium Phosphorus Zinc Sulfur Lithium CONTAMINAN	ppm ppm ppm ppm ppm ppm ppm ppm ppm	ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m) ASTM D5185(m)	0 0 0 0 0 0 110 0.0	<1 0 0 0 <1 166 <1 318 <1 21 2000	<1 0 0 0 0 164 <1 317 <1 history1	<1 0 0 <1 0 171 <1 413 <1 413 <1 history2



OIL ANALYSIS REPORT

A91,520 T	ticle Cou	nt			τ26
122,880 -					-24
30,720					-22
30,720 7,680 1,920 480 120 30					20
1,920-					-18
480 -	-	<u> </u>			16
120-		and the second s			14
30-					+22 +20 +18 +16 +14 +12 +10
8 Bibrese n	nal				-10
2-					8
0. 4µ	6µ	14µ	21µ	38 ^µ	71µ
50k	ticle Trer ^{4μm} ^{6μm}	d			
E 40k	14μm	٨		٨	Λ

Laboratory : WearCheck - C8-1175 Appleby Line, Burlington, ON L7L 5H9 CALA Sample No. : PC Received : 24 Jun 2024 Lab Number : 02643727 Tested : 26 Jun 2024 ISO 17025:2017 Accredited Laboratory Unique Number : 5801266 Diagnosed : 26 Jun 2024 - Kevin Marson Test Package : MAR 2 (Additional Tests: KV100, PQ, TAN Man, VI) To discuss this sample report, contact Customer Service at 1-800-268-2131. Test denoted (*) outside scope of accreditation, (m) method modified, (e) tested at external lab. Validity of results and interpretation are based on the sample and information as supplied.

Scotia Centre, 235 Water Strret St. John`s, NL CA A1C 1B6 Contact: Josh Hynes joshynes@suncor.com T: (709)778-3575 F: (709)724-2835

Suncor - Terra Nova Projects

FLUID CLEANLINESS method Particles >4µm Particles >6µm Particles >14µm Particles >21µm Particles >38µm Particles >71µm **Oil Cleanliness**

FLUID DEGRAL		methou	iiiiii/base	current	TIIStory I	Thistory2
Acid Number (AN)	mg KOH/g	ASTM D974*	0.05	0.02	0.02	0.02
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	Visual*	NONE	NONE	NONE	NONE
Yellow Metal	scalar	Visual*	NONE	NONE	NONE	NONE
Precipitate	scalar	Visual*	NONE	NONE	NONE	VLITE
Silt	scalar	Visual*	NONE	NONE	NONE	NONE
Debris	scalar	Visual*	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	Visual*	NONE	NONE	NONE	NONE
Appearance	scalar	Visual*	NORML	NORML	NORML	NORML
Odor	scalar	Visual*	NORML	NORML	NORML	NORML
Emulsified Water	scalar	Visual*	>.1	NEG	1%	NEG
Free Water	scalar	Visual*		NEG	NEG	NEG
FLUID PROPE	RTIES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D7279(m)	46.6	45.1	45.2	45.3
Visc @ 100°C	cSt	ASTM D7279(m)	7.04	6.8	6.8	6.7
Viscosity Index (VI)	Scale	ASTM D2270*	107	104	104	100

limit/base

ASTM D7647

ASTM D7647

method

ASTM D7647 >1300

ASTM D7647 >160

>10

ASTM D7647 >40

ASTM D7647 >3

ISO 4406 (c) >--/17/14

current

9194

2546

138

43

6

1

- 🔺

20/19/14

history1

2030

353

17

3

0

0

18/16/11

history2

3708

1021

64

14

1

0

19/17/13

biotory O

SAMPLE IMAGES

Bottom

Color

Report Id: TERHAM [WCAMIS] 02643727 (Generated: 06/26/2024 14:33:25) Rev: 1

Contact/Location: Josh Hynes - TERHAM Page 2 of 2