

OIL ANALYSIS REPORT

Sample Rating Trend

7809M Component **Diesel Engine**

PETRO CANADA DURON SHP 15W40 (--- QTS)

DIAGNOSIS

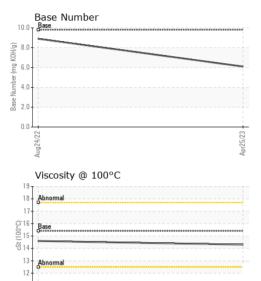
Recommendation

Resample at the next service interval to monitor.

All component wear rates are normal.

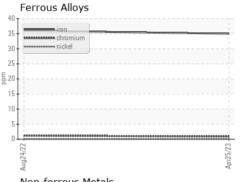
Contamination

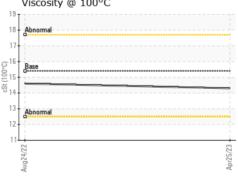
There is no indication of any contamination in the

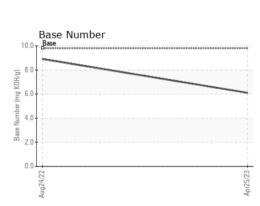

Fluid Condition

The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

14 3111 13440 (Q.10)		Aug2022	Apr2023		
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		GFL0072904	GFL0060686	
Sample Date		Client Info		25 Apr 2023	24 Aug 2022	
Machine Age	hrs	Client Info		3572	2920	
Oil Age	hrs	Client Info		720	580	
Oil Changed		Client Info		Changed	Changed	
Sample Status				NORMAL	NORMAL	
CONTAMINATI	ION	method	limit/base	current	history1	history2
Fuel		WC Method	>5	<1.0	<1.0	
Water		WC Method	>0.2	NEG	NEG	
Glycol		WC Method		NEG	NEG	
WEAR METALS	S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>90	35	36	
Chromium	ppm	ASTM D5185m	>20	<1	1	
Nickel	ppm	ASTM D5185m	>2	0	0	
Titanium	ppm	ASTM D5185m	>2	<1	0	
Silver	ppm	ASTM D5185m	>2	0	0	
Aluminum	ppm	ASTM D5185m	>20	3	3	
Lead	ppm	ASTM D5185m	>40	0	<1	
Copper	ppm		>330	<1	1	
Tin	ppm	ASTM D5185m	>15	0	<1	
Vanadium	ppm	ASTM D5185m	7.0	0	<1	
Cadmium	ppm	ASTM D5185m		0	0	
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	3	3	
Barium	ppm	ASTM D5185m	0	0	0	
Molybdenum	ppm	ASTM D5185m	60	61	61	
Manganese	ppm	ASTM D5185m	0	<1	<1	
Magnesium	ppm	ASTM D5185m	1010	956	955	
Calcium	ppm	ASTM D5185m	1070	1172	1132	
Phosphorus	ppm	ASTM D5185m	1150	1009	1039	
Zinc	PP					
	mag	ASTM D5185m	1270		1274	
	ppm ppm	ASTM D5185m ASTM D5185m	1270 2060	1283 2798	1274 3372	
	ppm			1283		
Sulfur CONTAMINAN	ppm	ASTM D5185m	2060	1283 2798	3372	
Sulfur CONTAMINAN Silicon	ppm TS	ASTM D5185m method	2060 limit/base	1283 2798 current	3372 history1	history2
Sulfur CONTAMINAN Silicon Sodium	ppm TS ppm	ASTM D5185m method ASTM D5185m	2060 limit/base	1283 2798 current	3372 history1 5	history2
Sulfur CONTAMINAN Silicon Sodium	TS ppm ppm	ASTM D5185m method ASTM D5185m ASTM D5185m	2060 limit/base >25	1283 2798 current 5 6	3372 history1 5 3	history2
Sulfur CONTAMINAN Silicon Sodium Potassium INFRA-RED	TS ppm ppm	ASTM D5185m method ASTM D5185m ASTM D5185m ASTM D5185m	2060 limit/base >25 >20	1283 2798 current 5 6 2	3372 history1 5 3	 history2
Sulfur CONTAMINAN Silicon Sodium Potassium INFRA-RED Soot %	ppm TS ppm ppm ppm	ASTM D5185m method ASTM D5185m ASTM D5185m ASTM D5185m method	2060 limit/base >25 >20 limit/base >6	1283 2798 current 5 6 2	3372 history1 5 3 1 history1	history2 history2
Sulfur CONTAMINAN Silicon Sodium Potassium INFRA-RED Soot % Nitration	ppm TS ppm ppm ppm	ASTM D5185m method ASTM D5185m ASTM D5185m ASTM D5185m method *ASTM D7844	2060 limit/base >25 >20 limit/base >6	1283 2798 current 5 6 2 current 0.3	3372 history1 5 3 1 history1 0.4	history2 history2
Sulfur CONTAMINAN Silicon Sodium Potassium INFRA-RED Soot % Nitration	ppm TS ppm ppm ppm ppm Abs/.1mm	ASTM D5185m method ASTM D5185m ASTM D5185m ASTM D5185m method *ASTM D7844 *ASTM D7624 *ASTM D7415	2060 limit/base >25 >20 limit/base >6 >20	1283 2798 current 5 6 2 current 0.3 10.2	3372 history1 5 3 1 history1 0.4 10.9	history2 history2 history2
Sulfur CONTAMINAN Silicon Sodium Potassium INFRA-RED Soot % Nitration Sulfation	ppm TS ppm ppm ppm ppm Abs/.1mm	ASTM D5185m method ASTM D5185m ASTM D5185m ASTM D5185m method *ASTM D7844 *ASTM D7624 *ASTM D7415	2060 limit/base >25 >20 limit/base >6 >20 >30	1283 2798 current 5 6 2 current 0.3 10.2 22.2	3372 history1 5 3 1 history1 0.4 10.9 23.6	history2 history2


OIL ANALYSIS REPORT


VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	
Precipitate	scalar	*Visual	NONE	NONE	NONE	
Silt	scalar	*Visual	NONE	NONE	NONE	
Debris	scalar	*Visual	NONE	NONE	NONE	
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	
Appearance	scalar	*Visual	NORML	NORML	NORML	
Odor	scalar	*Visual	NORML	NORML	NORML	
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	
Free Water	scalar	*Visual		NEG	NEG	
FLUID PROPE	DTIES	method	limit/hasa	current	history1	history2


LLUID FUOF		memod			HISTOLAL	HISTOLA
Visc @ 100°C	cSt	ASTM D445	15.4	14.3	14.6	

GRAPHS

	Non-ferrous Metals	
	copper	

	un	
_	i -	
mdd		
	!+	
	The state of the s	
	- 22	/23
	Aug24/22	Apr25/23
	Viscosity @ 100°C	

Laboratory Sample No.

: GFL0072904 Lab Number : 05837493 Unique Number : 10456296

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received

Tested Diagnosed

: 04 May 2023 : 04 May 2023

: 04 May 2023 - Wes Davis

GFL Environmental - 415 - Michigan East 6200 Elmridge Sterling Heights, MI US 48313

Contact: Frank Wolak fwolak@gflenv.com T: (586)825-9514

Test Package : FLEET Certificate L2367 To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)