

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id HINO US375526

Component

Diesel Engine

PETRO CANADA DURON SHP 10W30 (16 QTS)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor.

Wear

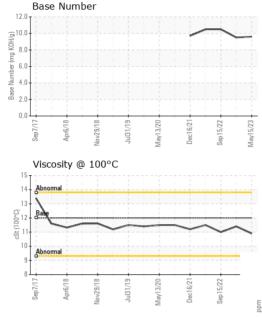
Metal levels are typical for a new component breaking in.

Contamination

There is no indication of any contamination in the

Fluid Condition

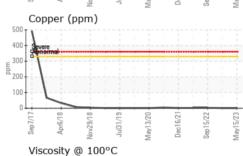
The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

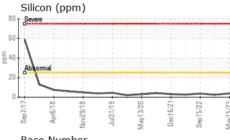

QIS)		Sep 2017 Ap	r2018 Nov2018 Jul201	9 May2020 Dec2021 Sep20	22 May202:	
SAMPLE INFOR	RMATION	method	limit/base	current	history 1	history 2
Sample Number		Client Info		PCA0097775	PCA0089981	PCA0079707
Sample Date		Client Info		15 May 2023	06 Jan 2023	15 Sep 2022
Machine Age	mls	Client Info		25361	0	0
Oil Age	mls	Client Info		0	0	1974
Oil Changed		Client Info		Changed	Changed	Changed
Sample Status				NORMAL	NORMAL	NORMAL
CONTAMINA	TION	method	limit/base	current	history 1	history 2
Fuel		WC Method	>5	<1.0	<1.0	<1.0
Glycol		WC Method		NEG	NEG	NEG
WEAR METAI	LS	method	limit/base	current	history 1	history 2
Iron	ppm	ASTM D5185m	>100	4	5	8
Chromium	ppm	ASTM D5185m	>20	0	<1	<1
Nickel	ppm	ASTM D5185m	>4	0	0	0
Titanium	ppm	ASTM D5185m		<1	0	0
Silver	ppm	ASTM D5185m	>3	0	0	<1
Aluminum	ppm	ASTM D5185m	>20	0	2	5
Lead	ppm	ASTM D5185m	>40	0	<1	<1
Copper	ppm	ASTM D5185m	>330	<1	1	2
Tin	ppm	ASTM D5185m	>15	0	<1	<1
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history 1	history 2
Boron	ppm	ASTM D5185m	2	35	22	23
Barium	ppm	ASTM D5185m	0	11	0	0
Molybdenum	ppm	ASTM D5185m	50	72	62	71
Manganese	ppm	ASTM D5185m	0	<1	<1	<1
Magnesium	ppm	ASTM D5185m	950	916	855	920
Calcium	ppm	ASTM D5185m	1050	1195	1101	1139
Phosphorus	ppm	ASTM D5185m	995	1038	983	1023
Zinc	ppm	ASTM D5185m	1180	1265	1136	1243
Sulfur	ppm	ASTM D5185m	2600	3862	3682	3972
CONTAMINA	NTS	method	limit/base	current	history 1	history 2
Silicon	ppm	ASTM D5185m	>25	4	2	4
Sodium	ppm	ASTM D5185m		1	0	0
Potassium	ppm	ASTM D5185m	>20	<1	0	5
INFRA-RED		method	limit/base	current	history 1	history 2
Soot %	%	*ASTM D7844	>3	0.1	0.2	0.2
Nitration	Abs/cm	*ASTM D7624	>20	5.4	5.6	6.1
Sulfation	Abs/.1mm	*ASTM D7415	>30	17.6	17.4	18.4
FLUID DEGRA	OITAD	method	limit/base	current	history 1	history 2
Oxidation	Abs/.1mm	*ASTM D7414	>25	13.6	13.3	14.0
Base Number (BN)	mg KOH/g			9.6	9.5	10.5
, ,	0					

OIL ANALYSIS REPORT

cSt

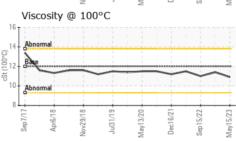
Visc @ 100°C




VISUAL		method	limit/base	current	history 1	history 2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
	DTIES	mathad	limit/booo	ourrent.	hiotom, 1	hiotom, O

10.9

GRAPHS	
Iron (ppm) 250 Severe	Lead (ppm)
150 - Abnormal	60 40 Abnormal
Apr6/18 Apr6/18 Jul31/19 Dec.16/21 Sep15/22 May/5/23	Sep7/17 Apr6/18 Ju/31/19 Ju/31/19 Ju/31/19 Sep15/22
Aluminum (ppm)	Chromium (ppm)
50	Severe 8 20 Abnormal


ASTM D445 12.00

11.4

11.0

Laboratory Sample No. Lab Number Unique Number

: 05888687

: PCA0097775 : 10539170

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received Diagnosed

: 03 Jul 2023 : 05 Jul 2023

Diagnostician : Wes Davis

Test Package : MOB 1 (Additional Tests: TBN)

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

63 REPAUPO STATION ROAD LOGAN TOWNSHIP, NJ US 08085

Contact: ED DAVIS

F: (856)214-3663

edavis@millertransgroup.com T: (856)214-3521

Contact/Location: ED DAVIS - MILLOG

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)