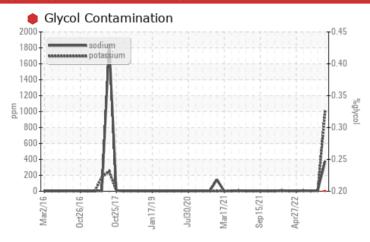


PROBLEM SUMMARY

Sample Rating Trend


Machine Id 10368C

Component

Natural Gas Engine

PETRO CANADA DURON GEO LD 15W40 (30 GAL)

COMPONENT CONDITION SUMMARY

RECOMMENDATION

We advise that you check for the source of the coolant leak. Check for low coolant level. Oil and filter change at the time of sampling has been noted. We recommend an early resample to monitor this condition.

PROBLEMATIC TEST RESULTS								
Sample Status				SEVERE	NORMAL	NORMAL		
Sodium	ppm	ASTM D5185m		A 374	10	8		
Potassium	ppm	ASTM D5185m	>20	<u> </u>	4	1		
Glycol	%	*ASTM D2982		0.20				

Customer Id: GFL007 Sample No.: GFL0082468 Lab Number: 05901066 Test Package: FLEET

To manage this report scan the QR code

To discuss the diagnosis or test data: Jonathan Hester +1 919-379-4092 x4092 ihester@wearcheckusa.com

To change component or sample information: Customer Service +1 1-800-237-1369 customerservice@wearcheck.com

RECOMMENDED ACTIONS Description Action **Status Date** Done By ? Change Fluid Oil and filter change at the time of sampling has been noted. Change Filter Oil and filter change at the time of sampling has been noted. ? Resample We recommend an early resample to monitor this condition. Check Glycol Access ? We advise that you check for the source of the coolant leak.

HISTORICAL DIAGNOSIS

16 Mar 2023 Diag: Angela Borella

Resample at the next service interval to monitor. All component wear rates are normal. There is no indication of any contamination in the oil. The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

14 Oct 2022 Diag: Jonathan Hester

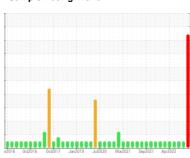
NORMAL

Resample at the next service interval to monitor. All component wear rates are normal. There is no indication of any contamination in the oil. The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

view report

10 Aug 2022 Diag: Don Baldridge

NORMAL


Resample at the next service interval to monitor. All component wear rates are normal. There is no indication of any contamination in the oil. The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id 10368C Component

Natural Gas Engine

PETRO CANADA DURON GEO LD 15W40 (30 GAL)

DIAGNOSIS

Recommendation

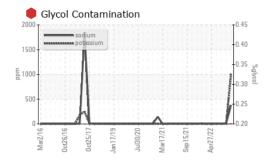
We advise that you check for the source of the coolant leak. Check for low coolant level. Oil and filter change at the time of sampling has been noted. We recommend an early resample to monitor this condition.

Wear

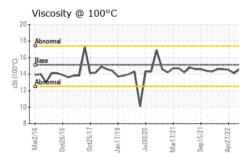
All component wear rates are normal.

Contamination

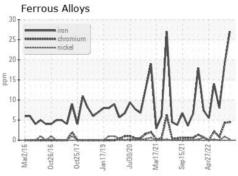
Sodium and/or potassium levels are high.

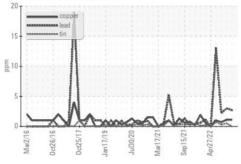

▲ Fluid Condition

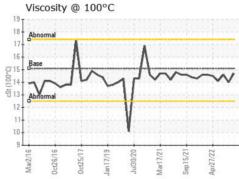
The BN result indicates that there is suitable alkalinity remaining in the oil.

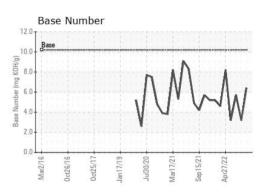

(30 GAL)	e2016 Oct2018 Oct2017 Jan2019 Ju2020 Mac2021 Sap2022 Apr2022						
SAMPLE INFOR	MATION	method	limit/base	current	history1	history2	
Sample Number		Client Info		GFL0082468	GFL0050741	PCA0061379	
Sample Date		Client Info		17 Jul 2023	16 Mar 2023	14 Oct 2022	
Machine Age	hrs	Client Info		4723	3559	2348	
Oil Age	hrs	Client Info		1176	1200	559	
Oil Changed		Client Info		Changed	Changed	Changed	
Sample Status				SEVERE	NORMAL	NORMAL	
WEAR METAL	S	method	limit/base	current	history1	history2	
Iron	ppm	ASTM D5185m	>50	27	19	8	
Chromium	ppm	ASTM D5185m	>4	4	4	<1	
Nickel	ppm	ASTM D5185m	>2	<1	<1	0	
Titanium	ppm	ASTM D5185m		0	<1	0	
Silver	ppm	ASTM D5185m	>3	0	0	0	
Aluminum	ppm	ASTM D5185m	>9	4	4	1	
Lead	ppm	ASTM D5185m	>30	3	3	2	
Copper	ppm	ASTM D5185m	>35	1	1	<1	
Tin	ppm	ASTM D5185m	>4	0	<1	<1	
Vanadium	ppm	ASTM D5185m		0	<1	0	
Cadmium	ppm	ASTM D5185m		0	0	0	
ADDITIVES		method	limit/base	current	history1	history2	
Boron	ppm	ASTM D5185m	50	0	4	9	
Barium	ppm	ASTM D5185m	5	0	0	0	
Molybdenum	ppm	ASTM D5185m	50	67	56	49	
Manganese	ppm	ASTM D5185m	0	2	<1	<1	
Magnesium	ppm	ASTM D5185m	560	533	525	504	
Calcium	ppm	ASTM D5185m	1510	1652	1734	1533	
Phosphorus	ppm	ASTM D5185m	780	696	700	651	
Zinc	ppm	ASTM D5185m	870	992	996	906	
Sulfur	ppm	ASTM D5185m	2040	3059	2515	2761	
CONTAMINAN	ITS	method	limit/base	current	history1	history2	
Silicon	ppm	ASTM D5185m	>+100	7	5	4	
Sodium	ppm	ASTM D5185m		A 374	10	8	
Potassium	ppm	ASTM D5185m	>20	4 991	4	1	
Glycol	%	*ASTM D2982		0.20			
INFRA-RED		method	limit/base	current	history1	history2	
Soot %	%	*ASTM D7844		0	0.1	0.1	
Nitration	Abs/cm	*ASTM D7624	>20	11.5	12.1	11.5	
Sulfation	Abs/.1mm	*ASTM D7415	>30	22.9	25.1	21.6	
FLUID DEGRAI	NOITAC	method	limit/base	current	history1	history2	
Oxidation	Abs/.1mm	*ASTM D7414	>25	18.5	19.5	18.4	
Base Number (BN)	mg KOH/g	ASTM D2896	10.2	6.4	3.2	5.7	
(214)				•			

OIL ANALYSIS REPORT


.0 - Base							
3.0				-	M	1	
6.0				./\	11	12	_/_
3.0 - Base 3.0 - 4				Λ.	V	V	M
2.0				-			
0.0	9	7-	6	-	-		2
Mar2/16	Oct26/16	Oct25/1	Jan17/1	Jul30/2	Mar17/2	Sep 15/2	Apr27/2


VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.1	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG


FLUID PROPE	RTIES	method	limit/base	current	history1	history2
Visc @ 100°C	cSt	ASTM D445	15.1	14.7	14.0	14.6


GRAPHS

Non-ferrous Metals

Certificate L2367

Laboratory Sample No. Lab Number Unique Number : 10562422

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 : GFL0082468

: 05901066

Received Diagnosed

: 18 Jul 2023 : 20 Jul 2023 Diagnostician : Jonathan Hester

Test Package : FLEET (Additional Tests: Glycol) To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

GFL Environmental - 007 - Brunswick

2809 Galloway Road Bolivia, NC US 28422

Contact: TOMMY DEVINE

tommy.devine@gflenv.com T:

F: (910)253-4179