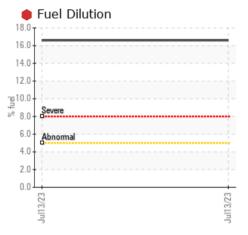
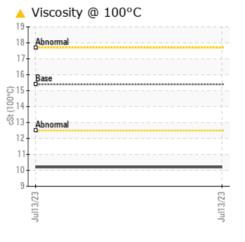
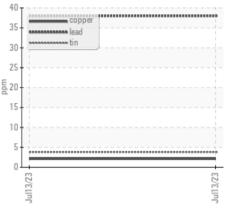


PROBLEM SUMMARY




FREIGHTLINER 59 Component

Diesel Engine Fluic


PETRO CANADA DURON SHP 15W40 (13 LTR)

COMPONENT CONDITION SUMMARY

Non-ferrous Metals

RECOMMENDATION

We advise that you check the fuel injection system. Oil and filter change at the time of sampling has been noted. We recommend an early resample to monitor this condition.

PROBLEMATIC TEST RESULTS							
Sample Status				SEVERE			
Lead	ppm	ASTM D5185m	>30	<u> </u>			
Fuel	%	ASTM D3524	>5	🛑 16.6			
Visc @ 100°C	cSt	ASTM D445	15.4	<u> </u>			

Customer Id: ATRPIN Sample No.: PCA0100637 Lab Number: 05902073 Test Package: FLEET

To manage this report scan the QR code

To discuss the diagnosis or test data: Don Baldridge +1 don.b505@comcast.net

To change component or sample information: Customer Service +1 1-800-237-1369 customerservice@wearcheck.com

RECOMMENDED ACTIONS							
Action	Status	Date	Done By	Description			
Change Fluid			?	Oil and filter change at the time of sampling has been noted.			
Change Filter			?	Oil and filter change at the time of sampling has been noted.			
Resample			?	We recommend an early resample to monitor this condition.			
Check Fuel/injector System			?	We advise that you check the fuel injection system.			

HISTORICAL DIAGNOSIS

OIL ANALYSIS REPORT

Sample Rating Trend

FUEL

FREIGHTLINER 59

Diesel Engine

Fluid PETRO CANADA DURON SHP 15W40 (13 LTR)

DIAGNOSIS

Recommendation

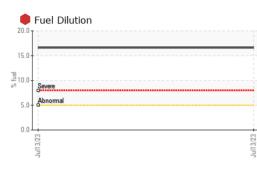
We advise that you check the fuel injection system. Oil and filter change at the time of sampling has been noted. We recommend an early resample to monitor this condition.

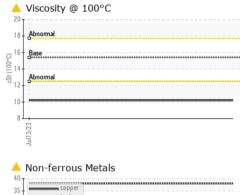
🔺 Wear

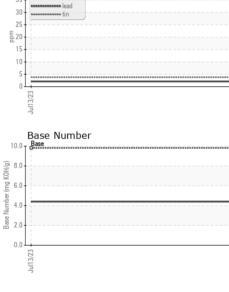
The lead level is abnormal. All other component wear rates are normal.

Contamination

There is a high amount of fuel present in the oil.


Fluid Condition


Fuel is present in the oil and is lowering the viscosity. The oil is no longer serviceable due to the presence of contaminants.


.IR)				Jul2023		
SAMPLE INFOR	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		PCA0100637		
Sample Date		Client Info		13 Jul 2023		
Machine Age	mls	Client Info		492603		
Oil Age	mls	Client Info		27556		
Oil Changed		Client Info		Changed		
Sample Status				SEVERE		
CONTAMINAT	ION	method	limit/base	current	history1	history2
Glycol		WC Method		NEG		
WEAR METAL	S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>80	57		
Chromium	ppm	ASTM D5185m	>5	2		
Nickel	ppm	ASTM D5185m	>2	0		
Titanium	ppm	ASTM D5185m		<1		
Silver	ppm	ASTM D5185m	>3	0		
Aluminum	ppm	ASTM D5185m	>30	0		
Lead	ppm	ASTM D5185m	>30	4 38		
Copper	ppm	ASTM D5185m	>150	2		
Tin	ppm	ASTM D5185m	>5	4		
Vanadium	ppm	ASTM D5185m		<1		
Cadmium	ppm	ASTM D5185m		0		
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	0		
Barium	ppm	ASTM D5185m	0	0		
Molybdenum	ppm	ASTM D5185m	60	54		
Manganese	ppm	ASTM D5185m	0	<1		
Magnesium	ppm	ASTM D5185m	1010	823		
Calcium	ppm	ASTM D5185m	1070	1037		
Phosphorus	ppm	ASTM D5185m	1150	854		
Zinc	ppm	ASTM D5185m	1270	1049		
Sulfur	ppm	ASTM D5185m	2060	2940		
CONTAMINAN	NTS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>20	5		
Sodium	ppm	ASTM D5185m		4		
Potassium	ppm	ASTM D5185m	>20	0		
Fuel	%	ASTM D3524	>5	🛑 16.6		
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>3	1.7		
Nitration	Abs/cm	*ASTM D7624	>20	11.2		
Sulfation	Abs/.1mm	*ASTM D7415	>30	27.4		
FLUID DEGRA	DATION	method	limit/base	current	history1	history2
FLUID DEGRA Oxidation	DATION Abs/.1mm	method *ASTM D7414	limit/base	current 28.0	history1	history2

OIL ANALYSIS REPORT

White Metal		method	limit/base	current	history1	history2
	scalar	*Visual	NONE	NONE		
ellow Metal	scalar	*Visual	NONE	NONE		
Precipitate	scalar	*Visual	NONE	NONE		
Silt	scalar	*Visual	NONE	NONE		
Debris	scalar	*Visual	NONE	NONE		
Sand/Dirt	scalar	*Visual	NONE	NONE		
Appearance	scalar	*Visual	NORML	NORML		
Odor	scalar	*Visual	NORML	NORML		
Emulsified Water	scalar	*Visual	>0.2	NEG		
Free Water	scalar	*Visual		NEG		
FLUID PROPE	ERTIES	method	limit/base	current	history1	history2
/isc @ 100°C	cSt	ASTM D445	15.4	10.2		
GRAPHS						
Ferrous Alloys						
iron						
chromium						
· · · · · · · · · · · · · · · · · · ·						
/23			//23			
Jul13/23			Jul13/23			
Non-ferrous Meta	als					
copper						
sessessesses lead						
EZZELING			Juli3/23			
EZEEIInf Viscosity @ 100°			Jul13/23	Base Number		
tin tin			Jul13/23			
Viscosity @ 100°			10	.0 T Base		
EXCELLING (0 100°)			10	.0 - Base		
Viscosity @ 100°			10	.0 - Base	-	
Viscosity @ 100°			10	.0 Base		
Viscosity @ 100°			10 10 10 10 10 10 10 10 10 10	0 Base 0 0 0 0 0 0 0 0 0 0	-	
Viscosity @ 100°			ber (mg KDH(g) 0113/23	0 Base 0 0 0 0 0 0 0 0 0 0	-	
Viscosity @ 100°			10 9 8 9 6 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0	0 Base 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	
Viscosity @ 100°			10 9 8 9 6 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0	0 Base 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	2
Viscosity @ 100°			EZ/ELIIn Base Number (n) Base S	0 Base 0 0 0 0 0 0 0 0	-	
Viscosity @ 100°	C		Juli 22/2 10 10 10 10 10 10 10 10 10 10 10 10 10	0 Base 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Viscosity @ 100° Abnomal Base Abnomal Base WearCheck USA -	C 501 Madia	son Ave., Ca	EZ/ELIIn EZ/ELIIn (0/HOX 60 0 10 6 6 6 10 10 10 10 10 10 10 10 10 10	3		A Truck Repai
Viscosity @ 100°	C	son Ave., Ca	Juli 22/2 10 10 10 10 10 10 10 10 10 10 10 10 10	3		A Truck Repai e Church Roa Pineville, NC

Unique Number : 10563429 Diagnostician : Don Baldridge Test Package : FLEET (Additional Tests: FuelDilution, PercentFuel) Certificate L2367 To discuss this sample report, contact Customer Service at 1-800-237-1369. * - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

F:

Laboratory Sample No. Lab Number

Contact: Vlad Melnichuk

shop@migway.com

T: (980)255-3200

US 28134