

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id 2679 Component

Diesel Engine

PETRO CANADA DURON SHP 15W40 (12 GAL)

DIAGNOSIS

Recommendation

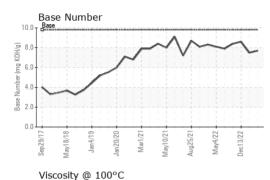
Resample at the next service interval to monitor.

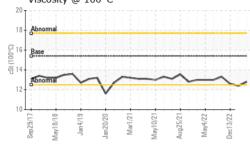
Wear

All component wear rates are normal.

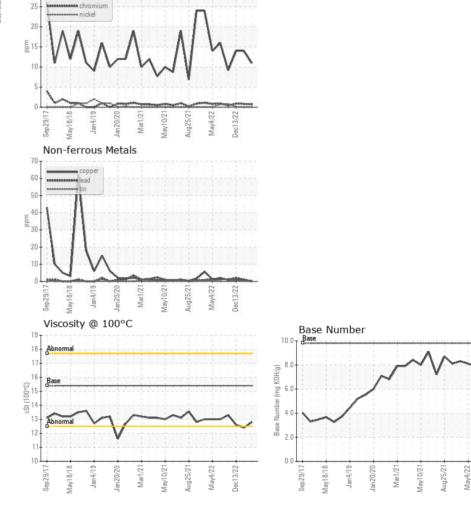
Contamination

There is no indication of any contamination in the oil.


Fluid Condition


The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

Sample Number		Client Info		GFL0068146	GFL0068143	GFL0046500
Sample Date		Client Info		17 Jul 2023	05 Apr 2023	13 Dec 2022
Machine Age	hrs	Client Info		15223	14675	14068
Oil Age	hrs	Client Info		600	600	600
Oil Changed	1110	Client Info		Changed	Changed	Changed
Sample Status				NORMAL	NORMAL	NORMAL
· · · · · · · · · · · · · · · · · · ·						-
CONTAMINAT	ION	method	limit/base	current	history1	history2
Fuel		WC Method	>3.0	<1.0	<1.0	<1.0
Glycol		WC Method		NEG	NEG	NEG
WEAR METAL	S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>165	11	14	14
Chromium	ppm	ASTM D5185m	>5	<1	<1	<1
Nickel	ppm	ASTM D5185m	>4	0	0	<1
Titanium	ppm	ASTM D5185m	>2	0	<1	<1
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>20	3	2	4
Lead	ppm	ASTM D5185m	>150	0	1	2
Copper	ppm	ASTM D5185m	>90	<1	<1	<1
Tin	ppm	ASTM D5185m	>5	0	<1	<1
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	4	10	10
Barium	ppm	ASTM D5185m	0	0	0	0
Molybdenum	ppm	ASTM D5185m	60	65	58	59
Manganese	ppm	ASTM D5185m	0	<1	<1	<1
Magnesium	ppm	ASTM D5185m	1010	1008	826	890
Calcium	ppm	ASTM D5185m	1070	1208	1065	1158
Phosphorus	ppm	ASTM D5185m	1150	1092	953	970
Zinc	ppm	ASTM D5185m	1270	1368	1127	1204
Sulfur	ppm	ASTM D5185m	2060	3800	2651	3230
CONTAMINAN	ITS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>35	5	7	8
Sodium	ppm	ASTM D5185m		3	4	5
Potassium	ppm	ASTM D5185m	>20	0	8	5
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>7.5	0.4	0.4	0.5
Nitration	Abs/cm	*ASTM D7624	>20	9.2	8.9	9.8
Sulfation	Abs/.1mm	*ASTM D7415	>30	19.8	19.7	21.5
FLUID DEGRA	DATION	method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	15.8	15.2	16.4
Base Number (BN)	mg KOH/g	ASTM D2896	9.8	7.7	7.5	8.6



OIL ANALYSIS REPORT

VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPE	RTIES	method	limit/base	current	history1	history2
Visc @ 100°C	cSt	ASTM D445	15.4	12.8	12.4	12.6
GRAPHS						
Ferrous Alloys						

GFL Environmental - 028 - Weldon Laboratory : WearCheck USA - 501 Madison Ave., Cary, NC 27513 Sample No. : GFL0068146 Received : 20 Jul 2023 2211 US Highway 301 Lab Number : 05903060 Diagnosed : 20 Jul 2023 Halifax, NC Unique Number : 10564416 Diagnostician : Wes Davis US 27839 Test Package : FLEET Contact: TRAVIS PORCH Certificate L2367 To discuss this sample report, contact Customer Service at 1-800-237-1369. tporch@gflenv.com * - Denotes test methods that are outside of the ISO 17025 scope of accreditation. T: (252)532-3344 F:

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Dec13/22