

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id 11322 PETERBILT 330

Component

Diesel Engine

PETRO CANADA DURON SHP 15W40 (20 QTS)

DIAGNOSIS

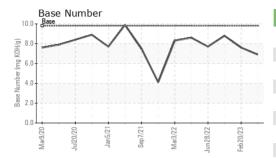
Recommendation

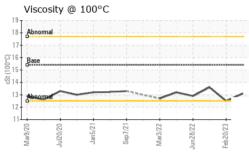
Resample at the next service interval to monitor.

All component wear rates are normal.

Contamination

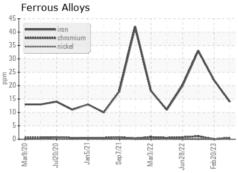
There is no indication of any contamination in the

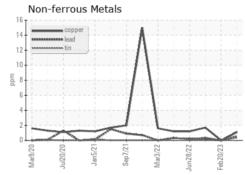

Fluid Condition

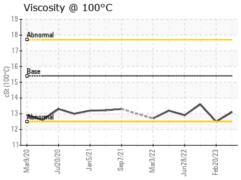

The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

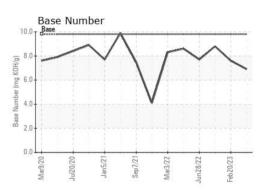
QIS)		Mar2020 J	ul2020 Jan2021 Sep	2021 Mar2022 Jun2022	Feb 2023	
SAMPLE INFOR	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		GFL0087111	GFL0056580	GFL0056524
Sample Date		Client Info		09 Aug 2023	20 Feb 2023	14 Oct 2022
Machine Age	hrs	Client Info		10110	9288	8724
Oil Age	hrs	Client Info		822	564	728
Oil Changed		Client Info		Changed	Changed	Changed
Sample Status				NORMAL	NORMAL	ATTENTION
CONTAMINAT	ION	method	limit/base	current	history1	history2
Fuel		WC Method	>5	<1.0	<1.0	<1.0
Glycol		WC Method		NEG	NEG	NEG
WEAR METAL	S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>110	14	22	33
Chromium	ppm	ASTM D5185m	>4	<1	0	1
Nickel	ppm	ASTM D5185m	>2	<1	0	0
Titanium	ppm	ASTM D5185m		0	0	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>25	5	7	17
Lead	ppm	ASTM D5185m	>45	<1	0	<1
Copper	ppm	ASTM D5185m	>85	1	0	2
Tin	ppm	ASTM D5185m	>4	<1	0	<1
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	4	5	0
Barium	ppm	ASTM D5185m	0	0	0	0
Molybdenum	ppm	ASTM D5185m	60	62	56	66
Manganese	ppm	ASTM D5185m	0	<1	<1	<1
Magnesium	ppm	ASTM D5185m	1010	904	848	836
Calcium	ppm	ASTM D5185m	1070	1066	1062	1321
Phosphorus	ppm	ASTM D5185m	1150	1006	885	980
Zinc	ppm	ASTM D5185m	1270	1256	1131	1244
Sulfur	ppm	ASTM D5185m	2060	3653	3044	3729
CONTAMINAN	ITS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>30	4	4	6
Sodium	ppm	ASTM D5185m		7	14	<u></u> ▲ 85
Potassium	ppm	ASTM D5185m	>20	5	12	33
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>3	0.3	0.4	0.6
Nitration	Abs/cm	*ASTM D7624	>20	9.1	10.0	12.4
Sulfation	Abs/.1mm	*ASTM D7415	>30	19.3	20.0	23.2
FLUID DEGRA	AOITAC	method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	17.0	18.0	20.9
Base Number (BN)	mg KOH/g		9.8	6.9	7.6	8.8
	39					

OIL ANALYSIS REPORT






VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG


FLUID PROPE	RTIES	method				history2
Visc @ 100°C	cSt	ASTM D445	15.4	13.1	12.5	13.6

GRAPHS

Certificate L2367

Laboratory Sample No. Lab Number

Unique Number : 10601902 Test Package : FLEET

: GFL0087111 : 05921955

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received Diagnosed

: 11 Aug 2023 : 11 Aug 2023 Diagnostician : Wes Davis

GFL Environmental - 001 - Raleigh(CNG)

3741 Conquest Drive Garner, NC US 27529

Contact: Craig Johnson craig.johnson@gflenv.com

T: (919)662-7100 F: (919)662-7130

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)