

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id **540**

Component **Diesel Engine**

PETRO CANADA DURON HP 15W40 (--- GAL)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor. Please specify the component make and model with your next sample.

Wear

All component wear rates are normal.

Contamination

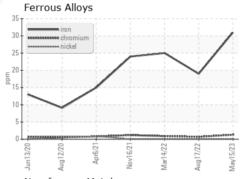
There is no indication of any contamination in the oil.

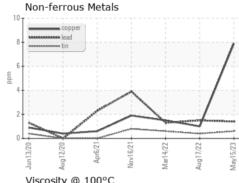
Fluid Condition

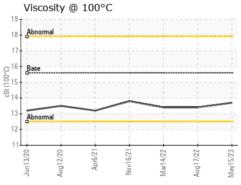
The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

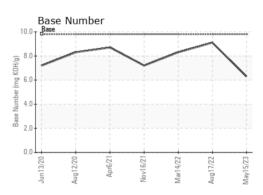
Jun2020 Aug2020 Apr2021 Nov2021 Mar2022 Aug2022 Mar2023						
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		PCA0069603	PCA0058357	PCA0058499
Sample Date		Client Info		15 May 2023	17 Aug 2022	14 Mar 2022
Machine Age	hrs	Client Info		11835	8488	8488
Oil Age	hrs	Client Info		887	8488	8488
Oil Changed		Client Info		Not Changd	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
CONTAMINATI	ION	method	limit/base	current	history1	history2
Fuel		WC Method	>5	<1.0	<1.0	<1.0
Glycol		WC Method		NEG	NEG	NEG
WEAR METALS	S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>100	31	19	25
Chromium	ppm	ASTM D5185m	>20	1	<1	<1
Nickel	ppm	ASTM D5185m	>4	0	0	0
Titanium	ppm	ASTM D5185m		0	0	<1
Silver	ppm	ASTM D5185m	>3	0	0	0
Aluminum	ppm	ASTM D5185m	>20	5	2	3
Lead	ppm	ASTM D5185m	>40	1	2	1
Copper	ppm	ASTM D5185m	>330	8	1	2
Tin	ppm	ASTM D5185m	>15	<1	<1	<1
Antimony	ppm	ASTM D5185m				
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		6	8	7
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		71	65	66
Manganese	ppm	ASTM D5185m		<1	<1	<1
Magnesium	ppm	ASTM D5185m		1035	897	1055
Calcium	ppm	ASTM D5185m		1331	1197	1229
Phosphorus	ppm	ASTM D5185m		1164	1029	1182
Zinc	ppm	ASTM D5185m		1446	1241	1407
Sulfur	ppm	ASTM D5185m		3851	3572	3034
CONTAMINAN	TS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	9	6	7
Sodium	ppm	ASTM D5185m		2	2	0
Potassium	ppm	ASTM D5185m	>20	4	<1	5
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>3	0.6	0.5	0.4
Nitration	Abs/cm	*ASTM D7624	>20	12.1	11.6	9.3
Sulfation	Abs/.1mm	*ASTM D7415	>30	22.7	22.1	19.8
FLUID DEGRAD	OATION	method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	20.1	18.6	16.9
Base Number (BN)	mg KOH/g	ASTM D2896	9.8	6.3	9.1	8.3

OIL ANALYSIS REPORT




Au A	A :	Š
Viscosity @ 100°C		
Abnormal	wannann	
17		
(2) 16 Base 00 15 S 14		
翌 14 13 T Abnormal		
12 - Abnormal		
Aug12/20 - Apr6/21 - Apr6/	1/22	
Jun13/2/ Aug12/2/ Apr6/2 Nov16/2	Aug17/2	


VISUAL		method				history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG


FLUID PROPERTIES		method				history2	
Visc @ 100°C	cSt	ASTM D445	15.6	13.7	13.4	13.4	

GRAPHS

Certificate L2367

Laboratory Sample No. Lab Number Unique Number : 10619983 Test Package : FLEET

: WearCheck USA - 501 Madison Ave., Cary, NC 27513

: PCA0069603 : 05934712

Received : 25 Aug 2023 Diagnosed Diagnostician : Wes Davis

: 25 Aug 2023

AVR - APPLE VALLEY READY MIX

14698 GALAXY AVE APPLE VALLEY, MN US 55124

Contact: COLE DAMBROTEN coledambroten@avrconcrete.com

To discuss this sample report, contact Customer Service at 1-800-237-1369. * - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Report Id: AVRAPP [WUSCAR] 05934712 (Generated: 08/29/2023 17:50:44) Rev: 1

T:

F: