

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id 214M Component **Diesel Engine**

PETRO CANADA DURON SHP 15W40 (--- GAL)

DIAGNOSIS

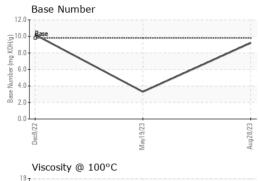
Recommendation

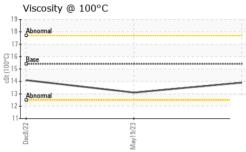
Resample at the next service interval to monitor.

All component wear rates are normal.

Contamination

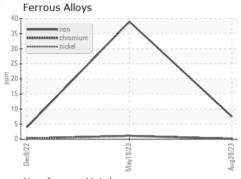
There is no indication of any contamination in the

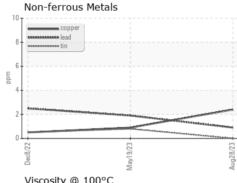

Fluid Condition

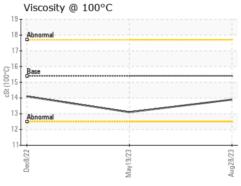

The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

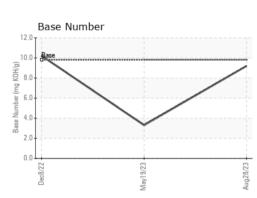
)N 3HP 13W40 (- GAL)	Dec2022 May2023 Aug2023				
SAMPLE INFORI	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		GFL0080817	GFL0080788	GFL0058954
Sample Date		Client Info		28 Aug 2023	19 May 2023	08 Dec 2022
Machine Age	mls	Client Info		394196	0	0
Oil Age	mls	Client Info		0	0	600
Oil Changed		Client Info		Not Changd	Not Changd	N/A
Sample Status				NORMAL	ABNORMAL	NORMAL
CONTAMINAT	ION	method	limit/base	current	history1	history2
Fuel		WC Method	>3.0	<1.0	<1.0	<1.0
Glycol		WC Method		NEG	NEG	NEG
WEAR METAL	S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>120	8	39	4
Chromium	ppm	ASTM D5185m	>20	<1	1	<1
Nickel	ppm	ASTM D5185m	>5	0	1	<1
Titanium	ppm	ASTM D5185m		<1	<1	0
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>20	<1	<1	2
Lead	ppm	ASTM D5185m	>40	<1	2	2
Copper	ppm	ASTM D5185m		2	<1	_ <1
Tin	ppm	ASTM D5185m	>15	0	<1	<1
Vanadium	ppm	ASTM D5185m	>10	<1	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
	ррпп					
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	4	2	7
Barium	ppm	ASTM D5185m	0	0	0	0
Molybdenum	ppm	ASTM D5185m	60	62	59	60
Manganese	ppm	ASTM D5185m	0	<1	<1	<1
Magnesium	ppm	ASTM D5185m	1010	1060	914	956
Calcium	ppm	ASTM D5185m	1070	1140	1098	1135
Phosphorus	ppm	ASTM D5185m	1150	1105	969	1013
Zinc	ppm	ASTM D5185m	1270	1349	1212	1365
Sulfur	ppm	ASTM D5185m	2060	4071	2614	3569
CONTAMINAN	TS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	5	6	5
Sodium	ppm	ASTM D5185m		2	10	<1
Potassium	ppm	ASTM D5185m	>20	3	2	2
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>4	0.1	0.3	0.1
Nitration	Abs/cm	*ASTM D7624	>20	5.2	13.4	5.5
Sulfation	Abs/.1mm	*ASTM D7415	>30	17.4	25.8	18.7
FLUID DEGRA	OATION	method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	13.5	28.0	14.1
Base Number (BN)	mg KOH/g	ASTM D2896	9.8	9.2	△ 3.3	10.2
Dase Mulliber (DIV)	my NOTI/g	70 LINI D7030	5.0	3.2	0.0	10.2

OIL ANALYSIS REPORT






VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG


FLUID PROPERTIES		method				history2
Visc @ 100°C	cSt	ASTM D445	15.4	13.9	13.1	14.1

GRAPHS

Laboratory Sample No.

Lab Number Unique Number : 10631132

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 : GFL0080817 : 05940520

Received Diagnosed : 01 Sep 2023 : 01 Sep 2023

Diagnostician : Wes Davis

GFL Environmental - 455 - Flint 2051 W. Bristol Rd Flint Township, MI

US 48507 Contact: MARK WOMBLE mwomble@gflenv.com T: (586)825-9514

Test Package : FLEET Certificate L2367 To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)