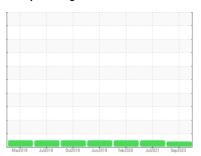


OIL ANALYSIS REPORT

Sample Rating Trend


VISCOSITY

KEMP QUARRIES / RIVER VALLEY BACKBONE **WL035**

Component **Rear Differential**

MOBIL MOBILTRANS HD 50 (--- GAL)

DIAGNOSIS

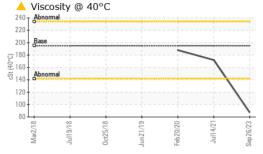
Recommendation

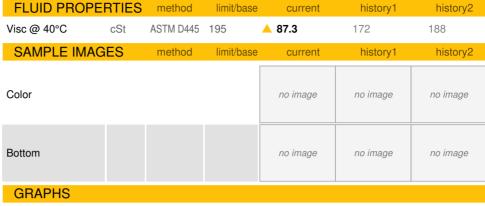
Resample at the next service interval to monitor.

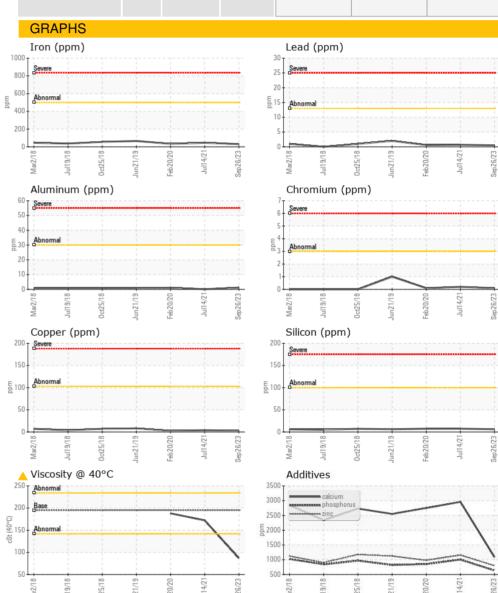
All component wear rates are normal.

Contamination

There is no indication of any contamination in the


Fluid Condition


The oil viscosity is lower than normal. Confirm oil type.


Mužel 8 Južel 8 Južel 9 Južel 9 Feb žel 20 Južel 2 Sep žel 2						
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		PCA0084863	PCA0038135	PCA001450
Sample Date		Client Info		26 Sep 2023	14 Jul 2021	20 Feb 2020
Machine Age	hrs	Client Info		44539	43079	42600
Oil Age	hrs	Client Info		900	0	0
Oil Changed		Client Info		Not Changd	Not Changd	N/A
Sample Status				ATTENTION	NORMAL	NORMAL
WEAR METALS	S	method	limit/base	current	history1	history2
ron	ppm	ASTM D5185m	>500	30	46	33
Chromium	ppm	ASTM D5185m	>3	<1	<1	<1
Nickel	ppm	ASTM D5185m	>3	0	0	<1
Γitanium	ppm	ASTM D5185m	>2	<1	<1	0
Silver	ppm	ASTM D5185m	>2	0	<1	0
Aluminum	ppm	ASTM D5185m	>30	1	<1	1
_ead	ppm	ASTM D5185m	>13	<1	<1	<1
Copper	ppm	ASTM D5185m	>103	3	4	3
Tin	ppm	ASTM D5185m	>5	<1	<1	0
Antimony	ppm	ASTM D5185m	>5		0	0
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		2	15	5
Barium	ppm	ASTM D5185m		0	0	0
Molybdenum	ppm	ASTM D5185m		2	3	1
Manganese	ppm	ASTM D5185m		<1	<1	<1
Magnesium	ppm	ASTM D5185m		44	46	30
Calcium	ppm	ASTM D5185m		1087	2957	2750
Phosphorus	ppm	ASTM D5185m		637	1005	852
Zinc	ppm	ASTM D5185m		796	1158	979
Sulfur	ppm	ASTM D5185m		5232	11362	10607
CONTAMINAN	TS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>100	6	7	7
Sodium	ppm	ASTM D5185m		0	<1	1
Potassium	ppm	ASTM D5185m	>20	<1	1	<1
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>.2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG

OIL ANALYSIS REPORT

Certificate L2367

Laboratory Sample No. Lab Number **Unique Number** Test Package : MOB 1

: PCA0084863 : 05972373 : 10684323

To discuss this sample report, contact Customer Service at 1-800-237-1369.

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 06 Oct 2023 Diagnosed : 11 Oct 2023 Diagnostician : Don Baldridge

Kemp Quarries - River Valley - Backbone 5600 S Hwy 253

Huntington, AR US 72940

Contact:

T:

F:

backbone@rivervalleyquarries.com

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)