

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id 913145 Component

Diesel Engine

PETRO CANADA DURON SHP 15W40 (--- GAL)

DIAGNOSIS

Recommendation

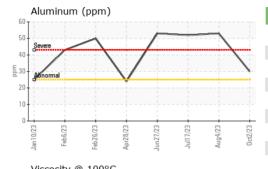
Resample at the next service interval to monitor.

Wear

All component wear rates are normal.

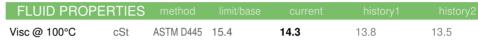
Contamination

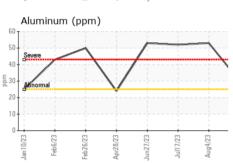
Elevated aluminum (Al) and/or lead (Pb) and potassium (K) levels in your metals analysis are likely a result of solder flux release into the lubricant and is common on new equipment/components. There is no indication of any contamination in the oil


Fluid Condition

The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

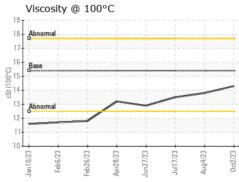
GAL)		Jan2023 F	eb2023 Feb2023 Apr20	23 Jun2023 Jul2023 Aug2023	0ct2023	
SAMPLE INFOR	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		GFL0080048	GFL0087082	GFL0087085
Sample Date		Client Info		02 Oct 2023	04 Aug 2023	17 Jul 2023
Machine Age	hrs	Client Info		1908	1532	1404
Oil Age	hrs	Client Info		153	0	0
Oil Changed		Client Info		Not Changd	Not Changd	Not Changd
Sample Status				NORMAL	NORMAL	NORMAL
CONTAMINAT	ION	method	limit/base	current	history1	history2
Fuel		WC Method	>5	<1.0	<1.0	<1.0
Glycol		WC Method		NEG	NEG	NEG
WEAR METAL	S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>110	57	79	75
Chromium	ppm	ASTM D5185m	>4	2	3	3
Nickel	ppm	ASTM D5185m	>2	<1	<1	<1
Titanium	ppm	ASTM D5185m		<1	<1	<1
Silver	ppm	ASTM D5185m	>2	0	<1	<1
Aluminum	ppm	ASTM D5185m	>25	30	53	52
Lead	ppm	ASTM D5185m	>45	<1	0	<1
Copper	ppm	ASTM D5185m	>85	11	16	15
Tin	ppm	ASTM D5185m	>4	<1	1	1
Vanadium	ppm	ASTM D5185m		<1	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	4	8	9
Barium	ppm	ASTM D5185m	0	12	0	0
Molybdenum	ppm	ASTM D5185m	60	43	30	29
Manganese	ppm	ASTM D5185m	0	2	3	3
Magnesium	ppm	ASTM D5185m	1010	927	923	933
Calcium	ppm	ASTM D5185m	1070	1180	1361	1384
Phosphorus	ppm	ASTM D5185m	1150	937	940	945
Zinc	ppm	ASTM D5185m	1270	1149	1186	1186
Sulfur	ppm	ASTM D5185m	2060	2893	3716	3826
CONTAMINAN	ITS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>30	10	12	13
Sodium	ppm	ASTM D5185m		3	4	4
Potassium	ppm	ASTM D5185m	>20	64	94	92
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>3	0.7	0.9	0.8
Nitration	Abs/cm	*ASTM D7624	>20	10.5	13.6	13.2
Sulfation	Abs/.1mm	*ASTM D7415	>30	24.1	28.6	27.7
FLUID DEGRAI	OATION	method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	20.1	24.8	23.7
Base Number (BN)	mg KOH/g	ASTM D2896	9.8	6.5	5.1	5.6

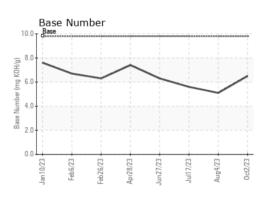



OIL ANALYSIS REPORT

VISUAL		method				history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG

-	-		-	
26/23	28/23	27/23	17/23	/ng4/2
	eb26/23	eb28/23	eb26/23 +	eb28/23 - hp78/23 - hu17/23 - hu117/23 - hu1




Ferrous Alloys 50 30 20

GRAPHS

10

Non-ferrous Metals

Certificate L2367

Laboratory

Sample No. Lab Number **Unique Number** Test Package : FLEET

: GFL0080048 : 05978699 : 10695994

To discuss this sample report, contact Customer Service at 1-800-237-1369.

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 13 Oct 2023 Diagnosed Diagnostician : Wes Davis

: 16 Oct 2023

10129 Highway 62 West

Princeton, KY US 42445 Contact: Kenneth Bigers kbigers@gflenv.com T: (270)970-0371

GFL Environmental - 844 - Princeton Hauling

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)