

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

725056-310015

Component

Diesel Engine

PETRO CANADA DURON SHP 15W40 (--- GAL)

DIAGNOSIS

Recommendation

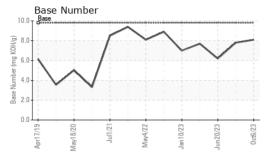
Resample at the next service interval to monitor.

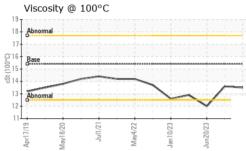
Wear

All component wear rates are normal.

Contamination

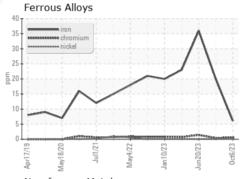
There is no indication of any contamination in the oil

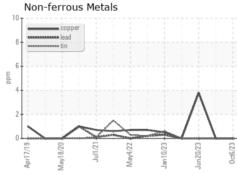

Fluid Condition

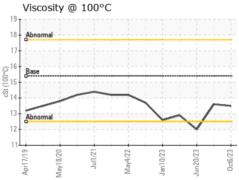

The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

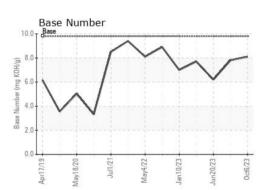
GAL)		Apr2019 1	Лау2020 Jul2021	May2022 Jan2023 Jun2023	Oct2023	
SAMPLE INFOR	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		GFL0098380	GFL0079339	GFL0079362
Sample Date		Client Info		06 Oct 2023	15 Sep 2023	20 Jun 2023
Machine Age	hrs	Client Info		22429	22324	21707
Oil Age	hrs	Client Info		700	617	700
Oil Changed	0	Client Info		Not Changd	Changed	Changed
Sample Status				NORMAL	MARGINAL	SEVERE
CONTAMINAT	ION	method	limit/base	current	history1	history2
Fuel		WC Method	>5	<1.0	<u>4.4</u>	11.9
Glycol		WC Method		NEG	NEG	NEG
WEAR METAL	S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>80	6	20	36
Chromium	ppm	ASTM D5185m	>5	<1	<1	1
Nickel	ppm	ASTM D5185m	>2	<1	0	0
Titanium	ppm	ASTM D5185m		<1	0	0
Silver	ppm	ASTM D5185m	>3	0	0	0
Aluminum	ppm	ASTM D5185m	>30	1	1	<1
Lead	ppm	ASTM D5185m	>30	0	0	0
Copper	ppm	ASTM D5185m	>150	0	0	4
Tin	ppm	ASTM D5185m	>5	0	0	0
Vanadium	ppm	ASTM D5185m		<1	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	0	0	0
Barium	ppm	ASTM D5185m	0	0	0	0
Molybdenum	ppm	ASTM D5185m	60	56	58	51
Manganese	ppm	ASTM D5185m	0	<1	0	<1
Magnesium	ppm	ASTM D5185m	1010	861	903	796
Calcium	ppm	ASTM D5185m	1070	940	959	889
Phosphorus	ppm	ASTM D5185m	1150	937	919	829
Zinc	ppm	ASTM D5185m	1270	1088	1173	1012
Sulfur	ppm	ASTM D5185m	2060	2689	2636	2616
CONTAMINAN	TS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>20	4	5	4
Sodium	ppm	ASTM D5185m		6	6	10
Potassium	ppm	ASTM D5185m	>20	0	2	3
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>3	0.3	0.8	1.3
Nitration	Abs/cm	*ASTM D7624	>20	6.5	10.5	14.5
Sulfation	Abs/.1mm	*ASTM D7415	>30	17.7	20.5	25.9
FLUID DEGRA	OATION	method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	13.6	18.4	27.0
Base Number (BN)	mg KOH/g		9.8	8.1	7.8	6.2
	99					

OIL ANALYSIS REPORT






VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG


FLUID PROPI	ERIIES	memoa			History	riistoryz
Visc @ 100°C	cSt	ASTM D445	15.4	13.5	13.6	<u> </u>

GRAPHS

Certificate L2367

Laboratory Sample No. Lab Number Unique Number : 10696556 Test Package : FLEET

: GFL0098380 : 05979261

To discuss this sample report, contact Customer Service at 1-800-237-1369.

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 16 Oct 2023 Diagnosed : 16 Oct 2023

Diagnostician : Wes Davis

GFL Environmental - 822 - Springfield Hauling

2120 West Bennett Street Springfield, MO

US 65807 Contact: Dennis Moore dennis.moore@gflenv.com T: (417)403-3641

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)