

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id 429026-1351

Component Diesel Engine Fluid

PETRO CANADA DURON SHP 15W40 (--- GAL)

DIAGNOSIS	
Recommendation	

Resample at the next service interval to monitor. (Customer Sample Comment: D service)

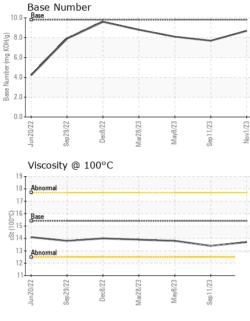
Wear

All component wear rates are normal.

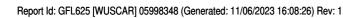
Contamination

There is no indication of any contamination in the oil.

Fluid Condition


The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

·							
Sample Date Client Info D1 Nov 2023 11 Sep 2023 08 May 2023 Machine Age hrs Client Info 9493 9239 8691 Oil Age hrs Client Info 231 550 590 Oil Changed Client Info Changed NoRMAL NoRMAL NoRMAL CONTAMINATION method Imit/base current history1 history2 Fuel WC Method >3.0 <1.0 <1.0 <1.0 Glycol WC Method >3.0 <1 0 0 Chromium ppm ASTM 05185m >20 5 1 1 1 Nickel ppm ASTM 05185m >20 0 0 0 0 Aluminum ppm ASTM 05185m >2 0 0 0 0 0 Aluminum ppm ASTM 05185m >6 <1 <1 0 0 0 Aluminum ppm ASTM 05185m	SAMPLE INFORM	ΛΑΤΙΟΝ	method	limit/base	current	history1	history2
Machine Age hrs Client Info 9493 9239 8691 Oil Age hrs Client Info 231 550 590 Oil Changed Client Info Changed Not Changed Not Changed Sample Status Imit/base current NoRMAL NORMAL CONTAMINATION method imit/base current Not Changed NEG Fuel WC Method >3.0 <1.0 <1.0 <1.0 Glycol WC Method >3.0 <1.0 <1.0 <1.0 WEAR METALS method imit/base current history1 history2 Iron ppm ASTM D5185m >200 5 12 9 Tranium ppm ASTM D5185m >2 0 0 0 Silver ppm ASTM D5185m >50 3 4 5 Lead ppm ASTM D5185m >5 3 2 2 Copper ppm	Sample Number Cli		Client Info		GFL0088308	GFL0088274	GFL0077528
Oil Age Inrs Client Info 231 550 590 Oil Changed Client Info Changed Not Changed Changed Sample Status Imit/base Current history1 history2 Fuel WC Method >3.0 <1.0 <1.0 <1.0 Glycol WC Method >3.0 <1.0 <1.0 <1.0 Chromium ppm ASTM D5185m >200 5 12 9 Chromium ppm ASTM D5185m >2 0 0 0 Silver ppm ASTM D5185m >2 0 0 0 Aduminum ppm ASTM D5185m >2 0 0 0 Aduminum ppm ASTM D5185m >50 3 7 9 Tin ppm ASTM D5185m >6 -1 0 0 Aduminum ppm ASTM D5185m 0 6 2 2 Barium ppm	Sample Date		Client Info		01 Nov 2023	11 Sep 2023	08 May 2023
Oil Changed Sample StatusClient InfoChanged NORMALNot Changed NORMALChanged NORMALChanged NORMALCONTAMINATIONmethodlimit/basecurrenthistory1history2FuelWC Method>3.0<1.0	Machine Age	hrs	Client Info		9493	9239	8691
Oil Changed Sample StatusClient InfoChanged NORMALNot Changed NORMALChanged NORMALChanged NORMALCONTAMINATIONmethodlimit/basecurrenthistory1history2FuelWC Method>3.0<1.0<1.0<1.0GlycolWC Method>3.0<1.0<1.0<1.0GlycolWC MethodNEGNEGNEGNEGWEAR METALSmethodimit/basecurrenthistory1history2IronppmASTM D5185m>2005129ChromiumppmASTM D5185m>2000SilverppmASTM D5185m>2000AluminumppmASTM D5185m>50345LeadppmASTM D5185m>50379TinppmASTM D5185m>6<100ChandiumppmASTM D5185m50379TinppmASTM D5185m0000ADDITIVESmethodimit/basecurrenthistory1history2BoronppmASTM D5185m0000MaganeseppmASTM D5185m0010MaganeseppmASTM D5185m0010MaganeseppmASTM D5185m0011ContaminppmASTM D5185m001 </th <th>Oil Age</th> <th>hrs</th> <th>Client Info</th> <th></th> <th>231</th> <th>550</th> <th>590</th>	Oil Age	hrs	Client Info		231	550	590
Sample Status NORMAL NORMAL NORMAL NORMAL CONTAMINATION method limit/base current history1 history2 Fuel WC Method >3.0 <1.0 <1.0 <1.0 Glycol WC Method NEG NEG NEG WEAR METALS method limit/base current history1 history2 Iron ppm ASTM D5185m >200 5 12 9 Chromium ppm ASTM D5185m >20 0 0 0 Silver ppm ASTM D5185m >2 0 0 0 Itanium ppm ASTM D5185m >50 3 4 5 Lead ppm ASTM D5185m >10 1 0 0 Copper ppm ASTM D5185m >6 <1 <1 0 Cadmium ppm ASTM D5185m 0 6 6 6 6 6 6 <	-		Client Info		Changed	Not Changd	Changed
Fuel WC Method >3.0 <1.0	-				-	NORMAL	
Glycol WC Method NEG NEG NEG WEAR METALS method limit/base current history1 history2 Iron ppm ASTM D5185m >200 5 12 9 Chromium ppm ASTM D5185m >6 <1 1 <1 Nickel ppm ASTM D5185m >2 0 0 0 Silver ppm ASTM D5185m >2 0 0 0 Aluminum ppm ASTM D5185m >50 3 4 5 Lead ppm ASTM D5185m >50 3 7 9 Tin ppm ASTM D5185m >6 <1 0 0 Vanadium ppm ASTM D5185m 0 0 0 0 Cadmium ppm ASTM D5185m 0 6 2 2 Barium ppm ASTM D5185m 0 0 0 0 Magnesiu	CONTAMINATI	ON	method	limit/base	current	history1	history2
Glycol WC Method NEG NEG NEG WEAR METALS method limit/base current history1 history2 Iron ppm ASTM D5185m >200 5 12 9 Chromium ppm ASTM D5185m >6 <1 1 <1 Nickel ppm ASTM D5185m >2 0 0 0 Silver ppm ASTM D5185m >2 0 0 0 Aluminum ppm ASTM D5185m >50 3 4 5 Lead ppm ASTM D5185m >50 3 7 9 Tin ppm ASTM D5185m >6 <1 0 0 Vanadium ppm ASTM D5185m 0 0 0 0 Cadmium ppm ASTM D5185m 0 6 2 2 Barium ppm ASTM D5185m 0 0 0 0 Magnesiu	Fuel		WC Method	>3.0	<1.0	<1.0	<1.0
WEAR METALS method limit/base current history1 history2 Iron ppm ASTM D5185m >200 5 12 9 Chromium ppm ASTM D5185m >200 5 12 9 Chromium ppm ASTM D5185m >2 0 0 0 Titanium ppm ASTM D5185m >2 0 0 0 Silver ppm ASTM D5185m >2 0 0 0 Auminum ppm ASTM D5185m >50 3 4 5 Lead ppm ASTM D5185m >50 3 7 9 Tin ppm ASTM D5185m 0 1 0 0 Cadmium ppm ASTM D5185m 0 0 0 0 Cadmium ppm ASTM D5185m 0 6 2 2 Barium ppm ASTM D5185m 0 60 60 63 <th></th> <th></th> <th></th> <th>20.0</th> <th></th> <th></th> <th></th>				20.0			
Iron ppm ASTM D5185m >200 5 12 9 Chromium ppm ASTM D5185m >6 <1 1 <1 Nickel ppm ASTM D5185m >3 <1 0 0 Silver ppm ASTM D5185m >2 0 0 0 Aluminum ppm ASTM D5185m >2 0 0 0 Aluminum ppm ASTM D5185m >2 0 0 0 Copper ppm ASTM D5185m >50 3 7 9 Tin ppm ASTM D5185m >6 <1 0 0 Cadmium ppm ASTM D5185m 0 6 2 2 Boron ppm ASTM D5185m 0 6 0 0 0 Molybdenum ppm ASTM D5185m 1010 919 923 1019 Calcium ppm ASTM D5185m 1070 1032	-			11 11 11			
Chromium ppm ASTM D5185m >6 <1	WEAR METALS	S	method	limit/base			
Nickel ppm ASTM D5185m >3 <1 0 0 Titanium ppm ASTM D5185m >2 0 0 0 Silver ppm ASTM D5185m >2 0 0 0 Aluminum ppm ASTM D5185m >50 3 4 5 Lead ppm ASTM D5185m >50 3 7 9 Tin ppm ASTM D5185m >6 <1	Iron	ppm	ASTM D5185m	>200	5	12	
Titanium ppm ASTM D5185m >2 0 0 0 Silver ppm ASTM D5185m >2 0 0 0 Aluminum ppm ASTM D5185m >50 3 4 5 Lead ppm ASTM D5185m >10 1 0 0 Copper ppm ASTM D5185m >50 3 7 9 Tin ppm ASTM D5185m >6 <1	Chromium	ppm	ASTM D5185m	>6		1	<1
Silver ppm ASTM D5185m >2 0 0 0 Aluminum ppm ASTM D5185m >50 3 4 5 Lead ppm ASTM D5185m >50 3 7 9 Tin ppm ASTM D5185m >6 <1	Nickel	ppm	ASTM D5185m	>3	<1	0	
Aluminum ppm ASTM D5185m >50 3 4 5 Lead ppm ASTM D5185m >10 1 0 0 Copper ppm ASTM D5185m >50 3 7 9 Tin ppm ASTM D5185m >6 <1	Titanium	ppm	ASTM D5185m	>2	0	0	0
Lead ppm ASTM D5185m >10 1 0 0 Copper ppm ASTM D5185m >50 3 7 9 Tin ppm ASTM D5185m >6 <1 <1 0 0 Vanadium ppm ASTM D5185m >6 <1 <1 0 0 Cadmium ppm ASTM D5185m 0 6 2 2 Boron ppm ASTM D5185m 0 6 2 2 Barium ppm ASTM D5185m 0 60 60 63 Magnesium ppm ASTM D5185m 0 <1 <1 0 Magnesium ppm ASTM D5185m 1010 919 923 1019 Calcium ppm ASTM D5185m 1070 1032 1058 1134 Phosphorus ppm ASTM D5185m 2060 3109 3196 3449 Sulfur ppm ASTM D5185m	Silver	ppm	ASTM D5185m	>2	0		
Copper ppm ASTM D5185m >50 3 7 9 Tin ppm ASTM D5185m >6 <1	Aluminum	ppm	ASTM D5185m	>50	3	4	5
Tin ppm ASTM D5185m >6 <1	Lead	ppm	ASTM D5185m	>10	1	0	0
Vanadium ppm ASTM D5185m <1 0 0 Cadmium ppm ASTM D5185m 0 0 0 0 ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 0 6 2 2 Barium ppm ASTM D5185m 0 0 0 0 0 Magnesium ppm ASTM D5185m 0 <1 <1 0 Magnesium ppm ASTM D5185m 0 <1 <1 0 Calcium ppm ASTM D5185m 1010 919 923 1019 Calcium ppm ASTM D5185m 1070 1032 1058 1134 Phosphorus ppm ASTM D5185m 1270 1269 1196 1326 Sulfur ppm ASTM D5185m 2060 3109 3196 3449 CONTAMINATY method limit/base current	Copper	ppm	ASTM D5185m	>50	3	7	9
Cadmium ppm ASTM D5185m 0 0 0 ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 0 6 2 2 Barium ppm ASTM D5185m 0 0 0 0 0 0 Mayanese ppm ASTM D5185m 0 <1	Tin	ppm	ASTM D5185m	>6	<1	<1	0
ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 0 6 2 2 Barium ppm ASTM D5185m 0 0 0 0 Molybdenum ppm ASTM D5185m 60 60 60 63 Magnesium ppm ASTM D5185m 0 <1	Vanadium	ppm	ASTM D5185m		<1	0	0
Boron ppm ASTM D5185m 0 6 2 2 Barium ppm ASTM D5185m 0 0 0 0 0 Molybdenum ppm ASTM D5185m 60 60 60 60 63 Manganese ppm ASTM D5185m 0 <1 <1 0 Magnesium ppm ASTM D5185m 1010 919 923 1019 Calcium ppm ASTM D5185m 1010 919 923 1019 Calcium ppm ASTM D5185m 1070 1032 1058 1134 Phosphorus ppm ASTM D5185m 1150 979 958 1061 Zinc ppm ASTM D5185m 1270 1269 1196 1326 Sulfur ppm ASTM D5185m 2060 3109 3196 3449 Sodium ppm ASTM D5185m >20 2 2 5 Sodium ppm	Cadmium	ppm	ASTM D5185m		0	0	0
Barium ppm ASTM D5185m 0 0 0 0 0 Molybdenum ppm ASTM D5185m 60 60 60 63 Manganese ppm ASTM D5185m 0 <1 <1 0 Magnesium ppm ASTM D5185m 1010 919 923 1019 Calcium ppm ASTM D5185m 1070 1032 1058 1134 Phosphorus ppm ASTM D5185m 1070 1032 1058 1134 Zinc ppm ASTM D5185m 1270 1269 1196 1326 Sulfur ppm ASTM D5185m 2060 3109 3196 3449 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >50 4 5 5 Sodium ppm ASTM D5185m >20 2 2 5 INFRA-RED method lim	ADDITIVES		method	limit/base	current	history1	history2
Molybdenum ppm ASTM D5185m 60 60 60 63 Manganese ppm ASTM D5185m 0 <1 <1 0 Magnesium ppm ASTM D5185m 1010 919 923 1019 Calcium ppm ASTM D5185m 1070 1032 1058 1134 Phosphorus ppm ASTM D5185m 1700 1032 1058 1061 Zinc ppm ASTM D5185m 1270 1269 1196 1326 Sulfur ppm ASTM D5185m 2060 3109 3196 3449 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >50 4 5 5 Sodium ppm ASTM D5185m >20 2 2 5 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844	Boron	ppm	ASTM D5185m	0	6	2	2
Manganese ppm ASTM D5185m 0 <1	Barium	ppm	ASTM D5185m	0	0	0	0
Magnesium ppm ASTM D5185m 1010 919 923 1019 Calcium ppm ASTM D5185m 1070 1032 1058 1134 Phosphorus ppm ASTM D5185m 1150 979 958 1061 Zinc ppm ASTM D5185m 1270 1269 1196 1326 Sulfur ppm ASTM D5185m 2060 3109 3196 3449 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >50 4 5 5 Sodium ppm ASTM D5185m >20 2 2 5 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.4 0.4 0.3 Nitration Abs/.mm *ASTM D7624 >20 6.1 8.0 7.7 Sulfation Abs/.fmm *ASTM D74	Molybdenum	ppm	ASTM D5185m	60	60	60	63
Calcium ppm ASTM D5185m 1070 1032 1058 1134 Phosphorus ppm ASTM D5185m 1150 979 958 1061 Zinc ppm ASTM D5185m 1270 1269 1196 1326 Sulfur ppm ASTM D5185m 2060 3109 3196 3449 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >50 4 5 5 Sodium ppm ASTM D5185m >20 2 2 5 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.4 0.4 0.3 Nitration Abs/.mm *ASTM D7624 >20 6.1 8.0 7.7 Sulfation Abs/.lmm *ASTM D7415 >30 18.2 18.1 19.0 FLUID DEGRADATION method <	Manganese	ppm	ASTM D5185m	0	<1	<1	0
Phosphorus ppm ASTM D5185m 1150 979 958 1061 Zinc ppm ASTM D5185m 1270 1269 1196 1326 Sulfur ppm ASTM D5185m 2060 3109 3196 3449 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >50 4 5 5 Sodium ppm ASTM D5185m >20 2 2 5 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D5185m >20 2 2 5 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.4 0.4 0.3 Nitration Abs/cm *ASTM D7624 >20 6.1 8.0 7.7 Sulfation Abs/.1mm *ASTM D7415	Magnesium	ppm	ASTM D5185m	1010	919	923	1019
Zinc ppm ASTM D5185m 1270 1269 1196 1326 Sulfur ppm ASTM D5185m 2060 3109 3196 3449 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >50 4 5 5 Sodium ppm ASTM D5185m >50 4 5 5 Sodium ppm ASTM D5185m >20 2 2 5 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.4 0.4 0.3 Nitration Abs/cm *ASTM D7624 >20 6.1 8.0 7.7 Sulfation Abs/.tmm *ASTM D7415 >30 18.2 18.1 19.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.tmm *ASTM D7414 <th>Calcium</th> <th>ppm</th> <th>ASTM D5185m</th> <th>1070</th> <th>1032</th> <th>1058</th> <th>1134</th>	Calcium	ppm	ASTM D5185m	1070	1032	1058	1134
Sulfur ppm ASTM D5185m 2060 3109 3196 3449 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >50 4 5 5 Sodium ppm ASTM D5185m >50 4 5 5 Sodium ppm ASTM D5185m >20 2 2 5 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.4 0.4 0.3 Nitration Abs/cm *ASTM D7624 >20 6.1 8.0 7.7 Sulfation Abs/.1mm *ASTM D7624 >20 6.1 8.0 7.7 Sulfation Abs/.1mm *ASTM D7415 >30 18.2 18.1 19.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D74	Phosphorus	ppm	ASTM D5185m	1150	979	958	1061
CONTAMINANTSmethodlimit/basecurrenthistory1history2SiliconppmASTM D5185m>50455SodiumppmASTM D5185m031PotassiumppmASTM D5185m>20225INFRA-REDmethodlimit/basecurrenthistory1history2Soot %%*ASTM D7844>30.40.40.3NitrationAbs/cm*ASTM D7624>206.18.07.7SulfationAbs/.1mm*ASTM D7415>3018.218.119.0FLUID DEGRADATIONmethodlimit/basecurrenthistory1history2OxidationAbs/.1mm*ASTM D7414>2513.513.715.0	Zinc	ppm	ASTM D5185m	1270	1269	1196	1326
Silicon ppm ASTM D5185m >50 4 5 5 Sodium ppm ASTM D5185m 0 3 1 Potassium ppm ASTM D5185m >20 2 2 5 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.4 0.4 0.3 Nitration Abs/cm *ASTM D7624 >20 6.1 8.0 7.7 Sulfation Abs/.tmm *ASTM D7415 >30 18.2 18.1 19.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.tmm *ASTM D7414 >25 13.5 13.7 15.0	Sulfur	ppm	ASTM D5185m	2060	3109	3196	3449
Sodium ppm ASTM D5185m 0 3 1 Potassium ppm ASTM D5185m >20 2 2 5 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.4 0.4 0.3 Nitration Abs/cm *ASTM D7624 >20 6.1 8.0 7.7 Sulfation Abs/.1mm *ASTM D7415 >30 18.2 18.1 19.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 13.5 13.7 15.0							
Sodium ppm ASTM D5185m 0 3 1 Potassium ppm ASTM D5185m >20 2 2 5 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.4 0.4 0.3 Nitration Abs/cm *ASTM D7624 >20 6.1 8.0 7.7 Sulfation Abs/.1mm *ASTM D7415 >30 18.2 18.1 19.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 13.5 13.7 15.0	CONTAMINAN	TS	method	limit/base	current	history1	history2
Potassium ppm ASTM D5185m >20 2 2 5 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.4 0.4 0.3 Nitration Abs/cm *ASTM D7624 >20 6.1 8.0 7.7 Sulfation Abs/.1mm *ASTM D7415 >30 18.2 18.1 19.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 13.5 13.7 15.0							
Soot % % *ASTM D7844 >3 0.4 0.4 0.3 Nitration Abs/cm *ASTM D7624 >20 6.1 8.0 7.7 Sulfation Abs/.1mm *ASTM D7415 >30 18.2 18.1 19.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 13.5 13.7 15.0	Silicon	ppm	ASTM D5185m		4	5	5
Nitration Abs/cm *ASTM D7624 >20 6.1 8.0 7.7 Sulfation Abs/.1mm *ASTM D7615 >30 18.2 18.1 19.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 13.5 13.7 15.0	Silicon Sodium	ppm ppm	ASTM D5185m ASTM D5185m	>50	4 0	5 3	5
Nitration Abs/cm *ASTM D7624 >20 6.1 8.0 7.7 Sulfation Abs/.1mm *ASTM D7615 >30 18.2 18.1 19.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 13.5 13.7 15.0	Silicon Sodium Potassium	ppm ppm	ASTM D5185m ASTM D5185m ASTM D5185m	>50 >20	4 0 2	5 3 2	5 1 5
Sulfation Abs/.1mm *ASTM D7415 >30 18.2 18.1 19.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 13.5 13.7 15.0	Silicon Sodium Potassium INFRA-RED	ppm ppm ppm	ASTM D5185m ASTM D5185m ASTM D5185m method	>50 >20 limit/base	4 0 2 current	5 3 2 history1	5 1 5 history2
FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 13.5 13.7 15.0	Silicon Sodium Potassium INFRA-RED Soot %	ppm ppm ppm	ASTM D5185m ASTM D5185m ASTM D5185m method *ASTM D7844	>50 >20 limit/base >3	4 0 2 current 0.4	5 3 2 history1 0.4	5 1 5 history2 0.3
Oxidation Abs/.1mm *ASTM D7414 >25 13.5 13.7 15.0	Silicon Sodium Potassium INFRA-RED Soot % Nitration	ppm ppm ppm % Abs/cm	ASTM D5185m ASTM D5185m ASTM D5185m method *ASTM D7844 *ASTM D7624	>50 >20 limit/base >3 >20	4 0 2 current 0.4 6.1	5 3 2 history1 0.4 8.0	5 1 5 history2 0.3 7.7
	Silicon Sodium Potassium INFRA-RED Soot % Nitration Sulfation	ppm ppm ppm % Abs/cm Abs/.1mm	ASTM D5185m ASTM D5185m ASTM D5185m method *ASTM D7844 *ASTM D7624 *ASTM D7415	>50 >20 limit/base >3 >20 >30	4 0 2 current 0.4 6.1 18.2	5 3 2 history1 0.4 8.0 18.1	5 1 5 history2 0.3 7.7 19.0
Base Number (BIN) mg KUHig ASTM D2896 9.8 8.7 /./ 8.1	Silicon Sodium Potassium INFRA-RED Soot % Nitration Sulfation FLUID DEGRAD	ppm ppm ppm % Abs/cm Abs/.1mm OATION	ASTM D5185m ASTM D5185m ASTM D5185m *ASTM D7844 *ASTM D7624 *ASTM D7624 Method	>50 >20 limit/base >3 >20 >30 limit/base	4 0 2 current 0.4 6.1 18.2 current	5 3 2 history1 0.4 8.0 18.1 history1	5 1 5 history2 0.3 7.7 19.0 history2
	Silicon Sodium Potassium INFRA-RED Soot % Nitration Sulfation FLUID DEGRAD Oxidation	ppm ppm ppm % Abs/cm Abs/.1mm Abs/.1mm	ASTM D5185m ASTM D5185m ASTM D5185m *ASTM D7844 *ASTM D7624 *ASTM D7415 method *ASTM D7414	>50 >20 limit/base >3 >20 >30 limit/base >25	4 0 2 current 0.4 6.1 18.2 current 13.5	5 3 2 history1 0.4 8.0 18.1 history1 13.7	5 1 5 history2 0.3 7.7 19.0 history2 15.0


OIL ANALYSIS REPORT

VISUAL

Decolor C	Mar28/23	May6/23 -	Sep 11/23	Yell Pree Silt Deb San App Odd Emu Free	d/Dirt learance or ulsified Wa e Water LUID PF	ROPI		*Visu *Visu *Visu *Visu *Visu *Visu *Visu *Visu *Visu	ial ial ial ial ial ial ial ial	NONE NONE NONE NONE NORM NORM >0.2		NONE NONE NONE NONE NONE NORML NORML NEG NEG		NONE NONE NONE NONE NONE NORML NORML NEG NEG	-	NONE NONE NONE NONE NORM NORM NEG NEG	1L 1L
					e @ 100°C RAPHS		cSt	ASTM	1 D445	15.4		13.7		13.4		13.8	
	Mai28/23 +	May6/23 +	Sep 11/23 +	50 40 30 10 0 220 10 0 220 10 0 220 10 0 220 10 0 220 10 0 220 10 0 220 10 0 20 2	prrous Allc	Deckling	Mai28/23	May8/23	Sep11/23	Nov1/23							
				17- (0)-16- (0)-15- ¹⁶ - ¹⁶	inormal							ase Numb	Jer				
				Jun20/22	Sep 29/22	Dec8/22	Mar28/23	May8/23	Sep11/23	Nov1/23	0.0	Sep29/22	Dec8/22	Mar28/23	May8/23	Sep 11/23	Nov1/23
Laboratory Sample No. Lab Number Unique Number Test Package To discuss this sample report, * - Denotes test methods that Statements of conformity to spe				: We : GF : 059 r : 107 e : FLE , contac are outs	arCheck L L0088308 98348 226708 EET t Custome side of the	JSA - er Ser SO	501 Mad Receive Diagnos Diagnos vice at 1- 17025 sc	ve., Ca : 03 f : 06 f : Sea 7-1369 accred	ry, NC 2 Nov 202 Nov 202 In Feltor D. itation.	GFL	GFL Environmental - 625 - Harrison Hauling 4102 Industrial Pkw Harrison, M US 48629 Contact: Glenda Stander gstanden@gflenv.con						

limit/base

回音

Submitted By: also GFL632 and GFL638 - Glenda Standen