

OIL ANALYSIS REPORT

NORMAL

Machine Id 10695 Component

Diesel Engine

PETRO CANADA DURON SHP 15W40 (--- GAL)

DIAGNOSIS

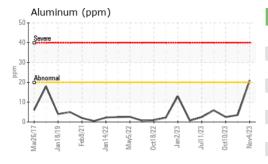
Recommendation

Resample at the next service interval to monitor.

All component wear rates are normal.

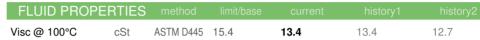
Contamination

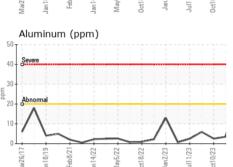
Elevated aluminum (Al) and/or lead (Pb) and potassium (K) levels in your metals analysis are likely a result of solder flux release into the lubricant and is common on new equipment/components. There is no indication of any contamination in the


Fluid Condition

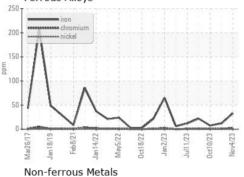
The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

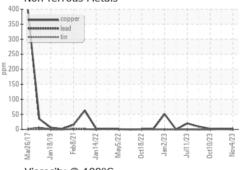
GAL) ***Z017 Jan-Z019 Fed/2021 Jan-Z012 May/2022 Oct/2022 Jan-Z022 Mod/202 Oct/2022 Mod/202 Oct/2022 Nov/202							
SAMPLE INFORI	MATION	method	limit/base	current	history1	history2	
Sample Number		Client Info		GFL0089632	GFL0089581	GFL0089636	
Sample Date		Client Info		04 Nov 2023	27 Oct 2023	10 Oct 2023	
Machine Age	hrs	Client Info		0	0	0	
Oil Age	hrs	Client Info		0	0	0	
Oil Changed		Client Info		Not Changd	Not Changd	Not Changd	
Sample Status				NORMAL	NORMAL	NORMAL	
CONTAMINAT	ION	method	limit/base	current	history1	history2	
Fuel		WC Method	>5	<1.0	<1.0	<1.0	
Glycol		WC Method		NEG	NEG	NEG	
WEAR METAL	S	method	limit/base	current	history1	history2	
Iron	ppm	ASTM D5185m	>100	33	12	8	
Chromium	ppm	ASTM D5185m	>20	2	1	<1	
Nickel	ppm	ASTM D5185m	>4	0	<1	<1	
Titanium	ppm	ASTM D5185m		0	<1	<1	
Silver	ppm	ASTM D5185m	>3	0	0	<1	
Aluminum	ppm	ASTM D5185m	>20	21	4	2	
Lead	ppm	ASTM D5185m	>40	0	<1	0	
Copper	ppm	ASTM D5185m	>330	3	2	3	
Tin	ppm	ASTM D5185m	>15	0	<1	<1	
Vanadium	ppm	ASTM D5185m		0	0	<1	
Cadmium	ppm	ASTM D5185m		0	0	0	
ADDITIVES		method	limit/base	current	history1	history2	
Boron	ppm	ASTM D5185m	0	4	10	8	
Barium	ppm	ASTM D5185m	0	0	0	0	
Molybdenum	ppm	ASTM D5185m	60	62	54	65	
Manganese	ppm	ASTM D5185m	0	<1	<1	<1	
Magnesium	ppm	ASTM D5185m	1010	896	801	876	
Calcium	ppm	ASTM D5185m	1070	1027	976	1019	
Phosphorus	ppm	ASTM D5185m	1150	923	942	938	
Zinc	ppm	ASTM D5185m	1270	1216	1071	1167	
Sulfur	ppm	ASTM D5185m	2060	2539	2580	2797	
CONTAMINAN	TS	method	limit/base	current	history1	history2	
Silicon	ppm	ASTM D5185m	>25	8	9	9	
Sodium	ppm	ASTM D5185m		1	5	2	
Potassium	ppm	ASTM D5185m	>20	47	2	6	
INFRA-RED		method	limit/base	current	history1	history2	
Soot %	%	*ASTM D7844	>3	1	0.1	0.1	
Nitration	Abs/cm	*ASTM D7624	>20	10.2	5.3	5.9	
Sulfation	Abs/.1mm	*ASTM D7415	>30	23.6	17.4	17.6	
FLUID DEGRA	DATION	method	limit/base	current	history1	history2	
Oxidation	Abs/.1mm	*ASTM D7414	>25	18.4	13.3	13.4	
Base Number (BN)	mg KOH/g	ASTM D2896	9.8	5.1	8.6	7.2	

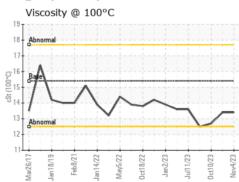


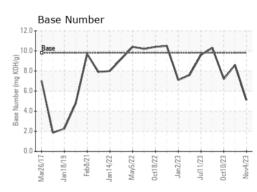

OIL ANALYSIS REPORT

VISUAL		method				history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG


Vis	cosity	@ 1	00°C						
18 - Abn	ormal								
17- 2 16 Bas	\								
(2-16 Base 15 Base 16	1		1	^		_			
13 - Abn	ormal			/				_	_
12	6	-	2	2	2				
Mar26/17	Jan 18/19	Feb 8/2	Jan14/2	May5/2	Oct18/2	Jan2/2	Jul11/2	0ct10/2	






Ferrous Alloys

GRAPHS

Certificate L2367

Test Package : FLEET

Laboratory Sample No. Lab Number Unique Number : 10729786

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 : GFL0089632 : 06001426

Received Diagnosed

: 08 Nov 2023 : 09 Nov 2023 Diagnostician : Wes Davis

GFL Environmental - 732 - Thomaston Hauling

2616 Waynmansville Road Thomaston, GA US 30286

Contact: Michael Taft

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

T:

F: