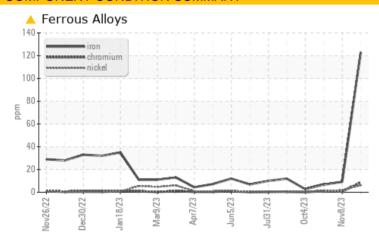


PROBLEM SUMMARY

Sample Rating Trend

WEAR



Machine Id 413028 Component Diesel Engine

PETRO CANADA DURON SHP 15W40 (--- GAL)

COMPONENT CONDITION SUMMARY

RECOMMENDATION

No corrective action is recommended at this time. Resample at the next service interval to monitor.

PROBLEMATIC TEST RESULTS									
Sample Status				ABNORMAL	NORMAL	NORMAL			
Iron	ppm	ASTM D5185m	>120	123	9	7			
Nickel	ppm	ASTM D5185m	>5	<u>^</u> 6	2	<1			

Customer Id: GFL868 Sample No.: GFL0071667 Lab Number: 06014756 Test Package: FLEET

To manage this report scan the QR code

To discuss the diagnosis or test data: Jonathan Hester +1 919-379-4092 x4092 jhester@wearcheckusa.com

To change component or sample information: Customer Service +1 1-800-237-1369 customerservice@wearcheck.com

RECOMMENDED ACTIONS

There are no recommended actions for this sample.

HISTORICAL DIAGNOSIS

08 Nov 2023 Diag: Wes Davis

NORMAL

Resample at the next service interval to monitor. All component wear rates are normal. There is no indication of any contamination in the oil. The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

10 Oct 2023 Diag: Wes Davis

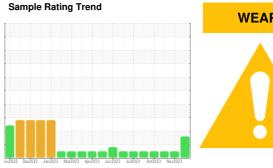
NORMAL

Resample at the next service interval to monitor. All component wear rates are normal. There is no indication of any contamination in the oil. The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

04 Oct 2023 Diag: Wes Davis

NORMAL

Resample at the next service interval to monitor. All component wear rates are normal. There is no indication of any contamination in the oil. The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.


OIL ANALYSIS REPORT

Machine Id 413028 Component **Diesel Engine**

PETRO CANADA DURON SHP 15W40 (--- GAL)

DIAGNOSIS

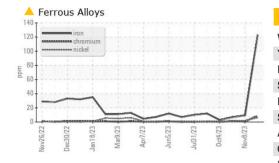
Recommendation

No corrective action is recommended at this time. Resample at the next service interval to monitor.

Cylinder, crank, or cam shaft wear is indicated. Valve wear is indicated.

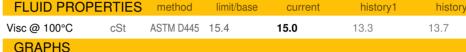
Contamination

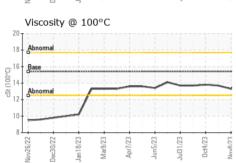
There is no indication of any contamination in the oil.

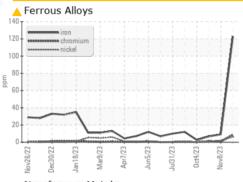

Fluid Condition

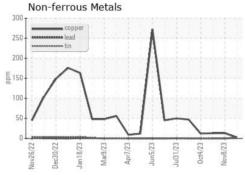
The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

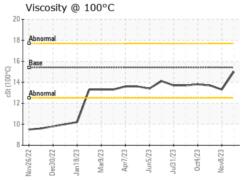
uv2022 Onc2022 Jan2023 Mar2023 Apr2023 Jun2023 Jun2023 Occ2023 Nov2023						
SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		GFL0071667	GFL0064607	GFL0094827
Sample Date		Client Info		09 Nov 2023	08 Nov 2023	10 Oct 2023
Machine Age	hrs	Client Info		2455	2455	2291
Oil Age	hrs	Client Info		0	971	807
Oil Changed		Client Info		Not Changd	N/A	N/A
Sample Status				ABNORMAL	NORMAL	NORMAL
CONTAMINATI	ON	method	limit/base	current	history1	history2
Fuel		WC Method	>3.0	<1.0	<1.0	<1.0
Water		WC Method	>0.2	NEG	NEG	NEG
Glycol		WC Method		NEG	NEG	NEG
WEAR METALS	3	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>120	<u></u> 123	9	7
Chromium	ppm	ASTM D5185m		9	<1	1
Nickel		ASTM D5185m	>5	<u> </u>	2	<1
Titanium	ppm	ASTM D5185m		<1	0	0
Silver	ppm	ASTM D5185m	>2	0	<1	0
Aluminum	ppm	ASTM D5165III		15	4	2
	ppm					
Lead	ppm	ASTM D5185m	>40	1	0	0
Copper	ppm	ASTM D5185m		3	13	13
Tin	ppm	ASTM D5185m	>15	<1	<1	<1
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	1	3	3
Barium	ppm	ASTM D5185m	0	0	0	0
Molybdenum	ppm	ASTM D5185m	60	71	58	58
Manganese	ppm	ASTM D5185m	0	1	<1	0
Magnesium	ppm	ASTM D5185m	1010	1111	909	824
Calcium	ppm	ASTM D5185m	1070	1205	969	936
Phosphorus	ppm	ASTM D5185m	1150	982	956	891
Zinc	ppm	ASTM D5185m	1270	1394	1194	1068
Sulfur	ppm	ASTM D5185m	2060	3121	2732	2756
CONTAMINAN	ΓS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	20	6	5
Sodium	ppm	ASTM D5185m		21	4	0
Potassium	ppm	ASTM D5185m	>20	15	8	6
Potassium INFRA-RED	ppm	ASTM D5185m method	>20 limit/base	15 current	8 history1	6 history2
	ppm %					
INFRA-RED		method	limit/base >4	current 2.3	history1	history2
INFRA-RED Soot %	%	method *ASTM D7844	limit/base >4 >20	current	history1	history2 0.2
INFRA-RED Soot % Nitration	% Abs/cm Abs/.1mm	method *ASTM D7844 *ASTM D7624 *ASTM D7415	limit/base >4 >20	2.3 12.7	history1 0.3 7.6	history2 0.2 5.7
INFRA-RED Soot % Nitration Sulfation FLUID DEGRAD	% Abs/cm Abs/.1mm	method *ASTM D7844 *ASTM D7624 *ASTM D7415 method	limit/base >4 >20 >30 limit/base	2.3 12.7 25.4 current	history1 0.3 7.6 19.2 history1	0.2 5.7 17.6 history2
INFRA-RED Soot % Nitration Sulfation	% Abs/cm Abs/.1mm	method *ASTM D7844 *ASTM D7624 *ASTM D7415 method *ASTM D7414	limit/base	2.3 12.7 25.4	history1 0.3 7.6 19.2	0.2 5.7 17.6

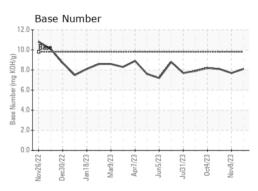



OIL ANALYSIS REPORT




VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG


Bas	e Nur	nber							
	·								
8.0 - 8.0 - 4.0 -	/			1	/	\	_	-	
5 6.0 per									
4.0									
2.0									
0.0	2	-			53	53	23		
Nov26/2)ec30/2	Jan 18/2	Mar9/23	Apr7/2	Jun5/23	Jul31/2	0ct4/2	Mnv8/7	
2		-5							



Certificate L2367

Laboratory Sample No.

Lab Number **Unique Number**

: GFL0071667 : 06014756 : 10753900 Test Package : FLEET

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 22 Nov 2023 : 27 Nov 2023 Diagnosed Diagnostician : Jonathan Hester

GFL Environmental - 868 - Childersburg Fines Hauling (Alpine)

13737 Plant Rd Childersburg, AL US 35044

Contact: JONATHAN WILLIAMS jonathan.williams@gflenv.com

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Report Id: GFL868 [WUSCAR] 06014756 (Generated: 11/27/2023 20:47:43) Rev: 1

Submitted By: see also GFL868 - Chelsea Bryan

T:

F: