

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id **2126924**

Component **Diesel Engine**

PETRO CANADA DURON SHP 10W30 (--- 0

DIAGNOSIS

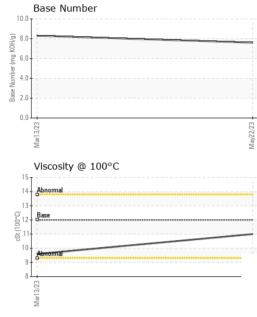
Recommendation

Resample at the next service interval to monitor. Please specify the component make and model with your next sample.

All component wear rates are normal.

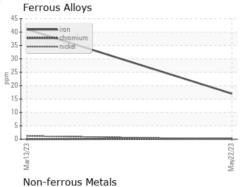
Contamination

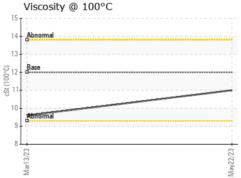
There is no indication of any contamination in the oil.

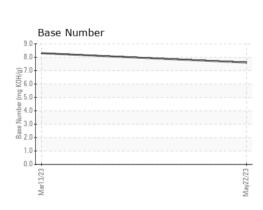

Fluid Condition

The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

QTS)			Mar2023	May2023		
SAMPLE INFORI	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		PCA0099472	PCA0094891	
Sample Date		Client Info		22 May 2023	13 Mar 2023	
Machine Age	mls	Client Info		0	21693	
Oil Age	mls	Client Info		20000	21693	
Oil Changed		Client Info		Not Changd	Changed	
Sample Status				NORMAL	NORMAL	
CONTAMINAT	ION	method	limit/base	current	history1	history2
Fuel		WC Method	>5	<1.0	<1.0	
Water		WC Method	>0.2	NEG	NEG	
Glycol		WC Method		NEG	NEG	
WEAR METAL	S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>100	17	41	
Chromium	ppm	ASTM D5185m	>20	<1	0	
Nickel	ppm	ASTM D5185m	>4	0	1	
Titanium	ppm	ASTM D5185m		<1	0	
Silver	ppm	ASTM D5185m	>3	<1	0	
Aluminum	ppm	ASTM D5185m	>20	12	22	
Lead	ppm	ASTM D5185m	>40	4	2	
Copper	ppm	ASTM D5185m	>330	294	153	
Tin	ppm	ASTM D5185m	>15	<1	4	
Vanadium	ppm	ASTM D5185m		0	0	
Cadmium	ppm	ASTM D5185m		0	0	
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	2	15	229	
Barium	ppm	ASTM D5185m	0	0	0	
Molybdenum	ppm	ASTM D5185m	50	63	107	
Manganese	ppm	ASTM D5185m	0	<1	3	
Magnesium	ppm	ASTM D5185m	950	908	666	
Calcium	ppm	ASTM D5185m	1050	1054	1490	
Phosphorus	ppm	ASTM D5185m	995	935	635	
Zinc	ppm	ASTM D5185m	1180	1157	814	
Sulfur	ppm	ASTM D5185m	2600	2715	2450	
CONTAMINAN	TS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	8	34	
Sodium	ppm	ASTM D5185m		2	5	
Potassium	ppm	ASTM D5185m	>20	37	66	
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>3	0.3	0.3	
Nitration	Abs/cm	*ASTM D7624	>20	8.9	9.8	
Sulfation	Abs/.1mm	*ASTM D7415	>30	19.8	24.6	
FLUID DEGRADATION method limit/base current history1 history2						
Oxidation	Abs/.1mm	*ASTM D7414	>25	16.2	22.4	
Base Number (BN)	mg KOH/g	ASTM D2896		7.6	8.3	


OIL ANALYSIS REPORT


VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	
Precipitate	scalar	*Visual	NONE	NONE	NONE	
Silt	scalar	*Visual	NONE	NONE	NONE	
Debris	scalar	*Visual	NONE	NONE	NONE	
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	
Appearance	scalar	*Visual	NORML	NORML	NORML	
Odor	scalar	*Visual	NORML	NORML	NORML	
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	
Free Water	scalar	*Visual		NEG	NEG	


FLUID PROPI	ERITES	method	limit/base		history1	history2
Visc @ 100°C	cSt	ASTM D445	12.00	11.0	9.6	

GRAPHS

Hon remous ricturs	
300	- TOTAL CONTROL OF THE PARTY OF
250 - copper	
200	
8 150 €	
100	
50	
0	
Mar13/23	May22/23
Viscosity @ 100°C	

Certificate L2367

Test Package : FLEET

Laboratory Sample No. Lab Number Unique Number : 10779950

: PCA0099472 : 06030159

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 11 Dec 2023 Diagnosed : 12 Dec 2023 Diagnostician : Wes Davis

PERDUE FARMS - GEORGETOWN 20621 SAVANAH RD GEORGETOWN, DE

US 19947

Contact: ROBERT LOCKWOOD Robert.Lockwood@Perdue.com

To discuss this sample report, contact Customer Service at 1-800-237-1369. * - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

T:

F: