
OIL ANALYSIS REPORT

MONTGOMERY Area **MACK 3846**

Component **Diesel Engine**

PETRO CANADA DURON SHP 15W40 (--- GAL)

DIAGNOSIS

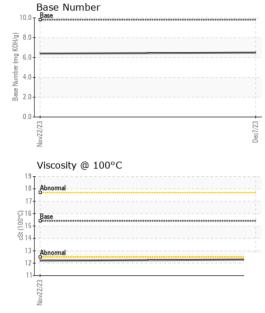
Recommendation

Resample at the next service interval to monitor.

All component wear rates are normal.

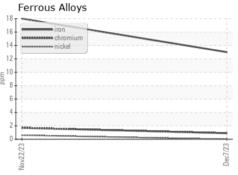
Contamination

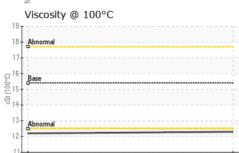
There is no indication of any contamination in the

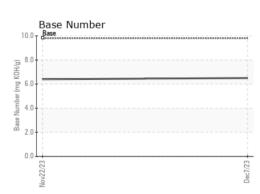

Fluid Condition

The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

N 30P 13W40 (-	GAL)		Nov2023	Dec2023		
SAMPLE INFOR	RMATION	method	limit/base	current	history1	history2
Sample Number		Client Info		GFL0091297	GFL0091288	
Sample Date		Client Info		07 Dec 2023	22 Nov 2023	
Machine Age	hrs	Client Info		25828	25101	
Oil Age	hrs	Client Info		25828	0	
Oil Changed		Client Info		Not Changd	Not Changd	
Sample Status				NORMAL	NORMAL	
CONTAMINAT	TION	method	limit/base	current	history1	history2
Fuel		WC Method	>3.0	<1.0	0.2	
Water		WC Method	>0.2	NEG	NEG	
Glycol		WC Method		NEG	NEG	
WEAR METAL	_S	method	limit/base	current	history1	history2
ron	ppm	ASTM D5185m	>120	13	18	
Chromium	ppm	ASTM D5185m	>20	<1	2	
Nickel	ppm	ASTM D5185m	>5	0	<1	
Titanium	ppm	ASTM D5185m	>2	0	<1	
Silver	ppm	ASTM D5185m	>2	0	0	
Aluminum	ppm	ASTM D5185m	>20	1	3	
Lead	ppm	ASTM D5185m	>40	4	5	
Copper	ppm	ASTM D5185m	>330	2	4	
Tin	ppm	ASTM D5185m	>15	0	<1	
Vanadium	ppm	ASTM D5185m		0	0	
Cadmium	ppm	ASTM D5185m		0	<1	
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	2	4	
Barium	ppm	ASTM D5185m	0	0	1	
Molybdenum	ppm	ASTM D5185m	60	55	67	
Manganese	ppm	ASTM D5185m	0	<1	<1	
Magnesium	ppm	ASTM D5185m	1010	831	977	
Calcium	ppm	ASTM D5185m	1070	923	1119	
Phosphorus	ppm	ASTM D5185m	1150	894	1029	
Zinc	ppm	ASTM D5185m	1270	1111	1272	
Sulfur	ppm	ASTM D5185m	2060	2558	3349	
CONTAMINAN	NTS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	12	16	
Sodium	ppm	ASTM D5185m		4	5	
Potassium	ppm	ASTM D5185m	>20	0	3	
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>4	0.4	0.4	
Nitration	Abs/cm	*ASTM D7624	>20	7.7	7.4	
Sulfation	Abs/.1mm	*ASTM D7415	>30	18.9	18.6	
FLUID DEGRA	DATION	method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	13.9	13.4	
Base Number (BN)	mg KOH/g	ASTM D2896	9.8	6.5	6.4	


OIL ANALYSIS REPORT


VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	
Precipitate	scalar	*Visual	NONE	NONE	NONE	
Silt	scalar	*Visual	NONE	NONE	NONE	
Debris	scalar	*Visual	NONE	NONE	NONE	
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	
Appearance	scalar	*Visual	NORML	NORML	NORML	
Odor	scalar	*Visual	NORML	NORML	NORML	
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	
Free Water	scalar	*Visual		NEG	NEG	


FLUID PROPE	RHES	metnoa	ilmit/base	current	nistory i	nistory2
Visc @ 100°C	cSt	ASTM D445	15.4	12.3	12.2	

GRAPHS

¹⁰ T	Non-ferrous Metals
8-	copper
_ 6-	
udd 4	And the state of t
2-	
0-	Nev22/23 +

Certificate L2367

Laboratory Sample No. Lab Number Unique Number : 10779979 Test Package : FLEET

: 06030188

: GFL0091297

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 11 Dec 2023 Diagnosed Diagnostician : Wes Davis

: 12 Dec 2023

GFL Environmental - 955 - Montgomery

1121 Wilbanks St Montgomery, AL US 36108 Contact: LISA REEVES

To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

T:

F: