
PROBLEM SUMMARY

Machine Id 727108-310052

Component Diesel Engine Fluid PETRO CANADA DURON SHP 15W40 (--- GAL)

COMPONENT CONDITION SUMMARY

RECOMMENDATION

We advise that you check the fuel injection system. We recommend that you drain the oil from the component if this has not already been done. We recommend an early resample to monitor this condition.

PROBLEMATIC TEST RESULTS							
Sample Status				SEVERE	SEVERE	SEVERE	
Fuel	%	ASTM D3524	>5	e 8.0	14.2	8.4	
Visc @ 100°C	cSt	ASTM D445	15.4	12.4	1 0.7	1 2.4	

Customer Id: GFL821 Sample No.: GFL0090340 Lab Number: 06042859 Test Package: FLEET

To manage this report scan the QR code

To discuss the diagnosis or test data: Wes Davis +1 905-569-8600 x223 wesd@wearcheck.ca

To change component or sample information: Customer Service +1 1-800-237-1369 customerservice@wearcheck.com

RECOMMENDEL	J ACTIONS			
Action	Status	Date	Done By	Description
Change Fluid			?	We recommend that you drain the oil from the component if this has not already been done.
Resample			?	We recommend an early resample to monitor this condition.
Check Fuel/injector System			?	We advise that you check the fuel injection system.

HISTORICAL DIAGNOSIS

FUEL

28 Nov 2023 Diag: Wes Davis

We advise that you check the fuel injection system. The oil change at the time of sampling has been noted. We recommend an early resample to monitor this condition.All component wear rates are normal. There is a high amount of fuel present in the oil. Tests confirm the presence of fuel in the oil. The BN result indicates that there is suitable alkalinity remaining in the oil. Fuel is present in the oil and is lowering the viscosity. The oil is no longer serviceable due to the presence of contaminants.

view report

06 Nov 2023 Diag: Wes Davis

We advise that you check the fuel injection system. We recommend that you drain the oil from the component if this has not already been done. We recommend an early resample to monitor this condition.All component wear rates are normal. There is a high amount of fuel present in the oil. Tests confirm the presence of fuel in the oil. The BN result indicates that there is suitable alkalinity remaining in the oil. Fuel is present in the oil and is lowering the viscosity. The oil is no longer serviceable due to the presence of contaminants.

Resample at the next service interval to monitor.All component wear rates are normal. There is no indication of any contamination in the oil. The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id 727108-310052

Component Diesel Engine

Fluid PETRO CANADA DURON SHP 15W40 (--- GAL)

DIAGNOSIS

Recommendation

We advise that you check the fuel injection system. We recommend that you drain the oil from the component if this has not already been done. We recommend an early resample to monitor this condition.

Wear

All component wear rates are normal.

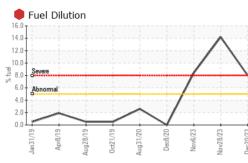
Contamination

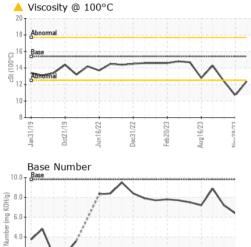
There is a high amount of fuel present in the oil. Tests confirm the presence of fuel in the oil.

Fluid Condition

The BN result indicates that there is suitable alkalinity remaining in the oil. Fuel is present in the oil and is lowering the viscosity. The oil is no longer serviceable due to the presence of contaminants.

Sample Number Client Info Q FL0090340 GFL0090340 GFL0090334 GFL0090333 Sample Date Client Info 1875 1747 11563 Oil Age hrs Client Info Not Changed Changed Not Changed Oil Age hrs Client Info Not Changed Changed Not Changed CONTAMINATION method SeVERe SeVERe SeVERe SeVERe Quotation VO Method 0.2 NEG NEG NEG Water WC Method 0.2 NEG NEG NEG Vater WC Method 0.2 NEG NEG NEG Nickel ppm ASTM 05185m 2.0 0 0 -1 Nickel ppm ASTM 05185m 2.0 0 -1 1 Nickel ppm ASTM 05185m 2.0 0 -1 1 Nickel ppm ASTM 05185m 3.0 0 -1 1 Nickel	SAMPLE INFORI	MATION	method	limit/base	current	history1	history2
Machine Age hrs Client Info 1875 1747 11563 Oil Age hrs Client Info Not Changed Severe Severe Sample Status Image Lient Info Not Changed Severe Severe CONTAMINATION method Imit/base current history1 History2 Water WC Method >0.2 NEG NEG NEG Wetar WC Method >0.2 NEG NEG NEG Wetar WC Method >5 <1 2.0 1 Netory2 Iron ppm ASTM 05155m >20 0 0 <1 1 Iron ppm ASTM 05155m >2 0 0 <1 2 Iron ppm ASTM 05155m >30 0 <1 2 <1 2 <1 2 <1 2 <1 2 <1 2 <1 2 <1 2 <1 2 2	Sample Number		Client Info		GFL0090340	GFL0090334	GFL0090303
Oil Age hrs Client Info 150 600 150 Oil Changed Client Info Not Changed SevERE SeVERE SeVERE CONTAMINATION method Imit/base current history1 history2 Water WC Method >0.2 NEG NEG NEG Glycol WC Method >0.2 NEG NEG NEG Water WC Method >0.2 NEG NEG NEG Uron ppm ASTM D5185n >80 10 40 29 Chromium ppm ASTM D5185n >5 <1 2 1 Nickel ppm ASTM D5185n >30 0 <1 1 Itanium ppm ASTM D5185n >30 0 <1 1 Qopper ppm ASTM D5185n >30 0 <1 1 Tin ppm ASTM D5185n >5 0 0 1 1 <td< th=""><th>Sample Date</th><th></th><th>Client Info</th><th></th><th>20 Dec 2023</th><th>28 Nov 2023</th><th>06 Nov 2023</th></td<>	Sample Date		Client Info		20 Dec 2023	28 Nov 2023	06 Nov 2023
Oil Changed Sample Status Client Info Not Changd SEVERE Changed SEVERE Not Changed SEVERE Not Changed SEVERE CONTAMINATION method Imit/base current history1 history2 Water WC Method >0.2 NEG NEG NEG NEG Water WC Method >0.2 NEG NEG NEG NEG WEAR METALS method Imit/base current history1 history2 Iron ppm ASTM D5185n >5 <1	Machine Age	hrs	Client Info		1875	1747	11563
Sample Status Init of the init/base SEVERE SEVERE SEVERE SEVERE CONTAMINATION method imit/base current history1 history2 Water WC Method >0.2 NEG NEG NEG Glycol WC Method >0.2 NEG NEG NEG WEAR METALS method limit/base current history1 history2 Iron ppm ASTM D5185m >80 10 40 29 Chromium ppm ASTM D5185m >20 0 <1 1 Nickel ppm ASTM D5185m >30 0 <1 <1 Outminum ppm ASTM D5185m >30 0 <1 <1 Cadmium ppm ASTM D5185m >5 0 0 <1 Cadmium ppm ASTM D5185m 0 0 0 <1 Manganese ppm ASTM D5185m 0 0 0 2 </th <th>Oil Age</th> <th>hrs</th> <th>Client Info</th> <th></th> <th>150</th> <th>600</th> <th>150</th>	Oil Age	hrs	Client Info		150	600	150
CONTAMINATION method limit/base current history1 history2 Water WC Method >0.2 NEG NEG NEG Glycol WC Method So.2 NEG NEG NEG WEAR METALS method limit/base current history1 history2 Iron ppm ASTM D5185n >80 10 40 29 Chromium ppm ASTM D5185n >2 0 0 <1 Nickel ppm ASTM D5185n >30 0 0 <1 Silver ppm ASTM D5185n >30 0 0 <1 Auminum ppm ASTM D5185n >30 0 0 <1 Auminum ppm ASTM D5185n >5 0 0 <1 Cadmium ppm ASTM D5185n 0 0 <1 <1 Adminum ppm ASTM D5185n 0 0 <1 1	Oil Changed		Client Info		Not Changd	Changed	Not Changd
Water WC Method >0.2 NEG NEG NEG Glycol WC Method Imit/base current Nistory1 Nistory2 Iron ppm ASTM D5185m >80 10 40 29 Chromium ppm ASTM D5185m >5 <1 2 1 Nickel ppm ASTM D5185m >2 0 0 <1 Silver ppm ASTM D5185m >30 0 <1 1 Aluminum ppm ASTM D5185m >30 0 <1 1 Aluminum ppm ASTM D5185m >30 0 <1 1 Copper ppm ASTM D5185m >50 0 <1 1 Tin ppm ASTM D5185m 50 0 <1 1 Cadmium ppm ASTM D5185m 0 0 <1 1 Magnesium ppm ASTM D5185m 0 0 <1 1 </th <th>Sample Status</th> <th></th> <th></th> <th></th> <th>SEVERE</th> <th>SEVERE</th> <th>SEVERE</th>	Sample Status				SEVERE	SEVERE	SEVERE
Glycol WC Method NEG NEG NEG NEG WEAR METALS nethod limil/base current history1 history2 Iron ppm ASTM D5185m >50 <1 2 1 Nickel ppm ASTM D5185m >2 0 0 <1 Titanium ppm ASTM D5185m >3 0 0 <1 Aluminum ppm ASTM D5185m >30 0 <1 <1 Copper ppm ASTM D5185m >30 0 <1 <1 Cadmium ppm ASTM D5185m >5 0 0 <1 Cadmium ppm ASTM D5185m >5 0 0 <1 Cadmium ppm ASTM D5185m >5 0 0 <1 ADDITIVES nethod Imit/base current history1 history2 Boron ppm ASTM D5185m 0 0 0 <1	CONTAMINAT	ION	method	limit/base	current	history1	history2
WEAR METALS method limit/base current history1 history2 Iron ppm ASTM D5185m >80 10 40 29 Chromium ppm ASTM D5185m >5 <1 2 1 Nickel ppm ASTM D5185m >2 0 0 <1 Titanium ppm ASTM D5185m >30 0 0 <1 Aluminum ppm ASTM D5185m >30 2 4 2 Lead ppm ASTM D5185m >30 0 <1 <1 <1 Tin ppm ASTM D5185m >50 0 0 <1 <1 Cadmium ppm ASTM D5185m 0 0 0 <1 <1 ADDTIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 0 0 0 0 0 Magnesium ppm AST	Water		WC Method	>0.2	NEG	NEG	NEG
Iron ppm ASTM D5185m >80 10 40 29 Chromium ppm ASTM D5185m >5 <1 2 1 Nickel ppm ASTM D5185m >2 0 0 <1 Titanium ppm ASTM D5185m >3 0 0 <1 Silver ppm ASTM D5185m >30 2 4 2 Lead ppm ASTM D5185m >30 2 10 11 Tin ppm ASTM D5185m >5 0 0 <1 Cadmium ppm ASTM D5185m >5 0 0 <1 Cadmium ppm ASTM D5185m 0 0 0 <1 Cadmium ppm ASTM D5185m 0 0 0 0 0 ADDITVES method imil/base current history1 history2 Boron ppm ASTM D5185m 0 0 0	Glycol		WC Method		NEG	NEG	NEG
Chromium ppm ASTM D5185m >5 <1	WEAR METAL	S	method	limit/base	current	history1	history2
Nickel ppm ASTM D5185m >2 0 0 <1 Titanium ppm ASTM D5185m 33 0 0 <1	Iron	ppm	ASTM D5185m	>80	10	40	29
Titanium ppm ASTM D5185m 0 0 <1	Chromium	ppm	ASTM D5185m	>5	<1	2	1
Silver ppm ASTM D5185m >3 0 0 <1 Aluminum ppm ASTM D5185m >30 2 4 2 Lead ppm ASTM D5185m >30 0 <1 <1 Copper ppm ASTM D5185m >5 0 0 <1 Tin ppm ASTM D5185m >5 0 0 <1 Cadmium ppm ASTM D5185m >5 0 0 <1 Cadmium ppm ASTM D5185m 0 0 0 0 0 0 ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 0 0 0 0 0 Manganese ppm ASTM D5185m 0 0 0 <1< 1 Magnesium ppm ASTM D5185m 1010 844 759 810 Calcium ppm ASTM D5	Nickel	ppm	ASTM D5185m	>2	0	0	<1
Atuminum ppm ASTM D5185m >30 2 4 2 Lead ppm ASTM D5185m >30 0 <1 <1 Copper ppm ASTM D5185m >150 2 10 11 Tin ppm ASTM D5185m >5 0 0 <1 Vanadium ppm ASTM D5185m <1 0 <1 Cadmium ppm ASTM D5185m 0 0 0 <1 ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 0 0 0 0 Molybdenum ppm ASTM D5185m 0 0 <1 <1 Magnanese ppm ASTM D5185m 1010 844 759 810 Calcium ppm ASTM D5185m 1100 847 759 810 Sulfur ppm ASTM D5185m 1270 1117 <t< th=""><th>Titanium</th><th>ppm</th><th>ASTM D5185m</th><th></th><th>0</th><th>0</th><th><1</th></t<>	Titanium	ppm	ASTM D5185m		0	0	<1
Lead ppm ASTM D5185m >30 0 <1	Silver	ppm	ASTM D5185m	>3	0	0	<1
Copper ppm ASTM D5185m >150 2 10 11 Tin ppm ASTM D5185m >5 0 0 <1 Vanadium ppm ASTM D5185m <1 0 <1 Cadmium ppm ASTM D5185m 0 0 0 <1 ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 0 0 0 0 Molydenum ppm ASTM D5185m 0 0 0 0 Marganese ppm ASTM D5185m 0 0 <1 <1 Magnesium ppm ASTM D5185m 1010 844 759 810 Calcium ppm ASTM D5185m 1070 887 879 924 Phosphorus ppm ASTM D5185m 1270 1117 997 1092 Sulfur ppm ASTM D5185m 2060 2744	Aluminum	ppm	ASTM D5185m	>30	2	4	2
Tin ppm ASTM D5185m >5 0 0 <1	Lead	ppm	ASTM D5185m	>30	0	<1	<1
Vanadium ppm ASTM D5185m <1	Copper	ppm	ASTM D5185m	>150	2	10	11
Cadmium ppm ASTM D5185m 0 0 <1	Tin	ppm	ASTM D5185m	>5	0	0	<1
ADDITIVESmethodlimit/basecurrenthistory1history2BoronppmASTM D5185m00000BariumppmASTM D5185m00000MolybdenumppmASTM D5185m60514554ManganeseppmASTM D5185m000<1	Vanadium	ppm	ASTM D5185m		<1	0	<1
Boron ppm ASTM D5185m 0 0 0 0 2 Barium ppm ASTM D5185m 0 0 0 0 0 Molybdenum ppm ASTM D5185m 60 51 45 54 Manganese ppm ASTM D5185m 0 0 <1 <1 Magnesium ppm ASTM D5185m 1010 844 759 810 Calcium ppm ASTM D5185m 1010 844 759 810 Calcium ppm ASTM D5185m 1070 887 879 924 Phosphorus ppm ASTM D5185m 1070 887 879 924 Sulfur ppm ASTM D5185m 1270 1117 997 1092 Sulfur ppm ASTM D5185m 2060 2744 2105 2852 CONTAMINANTS method limit/base current history1 history2 Sodium ppm	Cadmium	ppm	ASTM D5185m		0	0	<1
Barium ppm ASTM D5185m 0 0 0 0 Molybdenum ppm ASTM D5185m 60 51 45 54 Manganese ppm ASTM D5185m 0 0 <1 <1 Magnesium ppm ASTM D5185m 1010 844 759 810 Calcium ppm ASTM D5185m 1070 887 879 924 Phosphorus ppm ASTM D5185m 1070 887 879 924 Phosphorus ppm ASTM D5185m 1070 887 879 924 Sulfur ppm ASTM D5185m 1270 1117 997 1092 Sulfur ppm ASTM D5185m 2060 2744 2105 2852 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >20 4 9 4 Potassium ppm ASTM D5185m	ADDITIVES		method	limit/base	current	history1	history2
Molybdenum ppm ASTM D5185m 60 51 45 54 Manganese ppm ASTM D5185m 0 0 <1 <1 Magnesium ppm ASTM D5185m 1010 844 759 810 Calcium ppm ASTM D5185m 1070 887 879 924 Phosphorus ppm ASTM D5185m 1070 887 879 924 Phosphorus ppm ASTM D5185m 1150 941 813 897 Zinc ppm ASTM D5185m 1270 1117 997 1092 Sulfur ppm ASTM D5185m 2060 2744 2105 2852 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >20 4 9 4 Potassium ppm ASTM D5185m >20 0 <1 5 Fuel % ASTM D5185m	Boron	ppm	ASTM D5185m	0	0		
Manganese ppm ASTM D5185m 0 0 <1	Barium	ppm	ASTM D5185m	0	0	0	0
Magnesium ppm ASTM D5185m 1010 844 759 810 Calcium ppm ASTM D5185m 1070 887 879 924 Phosphorus ppm ASTM D5185m 1150 941 813 897 Zinc ppm ASTM D5185m 1270 1117 997 1092 Sulfur ppm ASTM D5185m 2060 2744 2105 2852 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >20 4 10 9 Sodium ppm ASTM D5185m >20 4 9 4 Potassium ppm ASTM D5185m >20 0 <1 5 Fuel % ASTM D5185m >20 0 <14.2 8.4 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 <th>Molybdenum</th> <th>ppm</th> <th>ASTM D5185m</th> <th>60</th> <th>-</th> <th>45</th> <th>54</th>	Molybdenum	ppm	ASTM D5185m	60	-	45	54
Calcium ppm ASTM D5185m 1070 887 879 924 Phosphorus ppm ASTM D5185m 1150 941 813 897 Zinc ppm ASTM D5185m 1270 1117 997 1092 Sulfur ppm ASTM D5185m 2060 2744 2105 2852 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >20 4 10 9 Sodium ppm ASTM D5185m >20 4 9 4 Potassium ppm ASTM D5185m >20 0 <1 5 Fuel % ASTM D5185m >20 0 <1 5 Fuel % ASTM D5185m >20 0 <1 5 Fuel % ASTM D5185m >20 0 <14.2 8.4 INFRA-RED method limit/base current	Manganese	ppm	ASTM D5185m	0	0	<1	<1
Phosphorus ppm ASTM D5185m 1150 941 813 897 Zinc ppm ASTM D5185m 1270 1117 997 1092 Sulfur ppm ASTM D5185m 2060 2744 2105 2852 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >20 4 10 9 Sodium ppm ASTM D5185m >20 4 9 4 Potassium ppm ASTM D5185m >20 0 <1 5 Fuel % ASTM D5185m >20 0 <1 5 Soot % % ASTM D5185m >20 0 <1 5 Soot % % ASTM D5185m >20 0 <14.2 8.4 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7624 >20 8.0<	•	ppm			844		810
Zinc ppm ASTM D5185m 1270 1117 997 1092 Sulfur ppm ASTM D5185m 2060 2744 2105 2852 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >20 4 10 9 Sodium ppm ASTM D5185m >20 4 9 4 Potassium ppm ASTM D5185m >20 0 <1 5 Fuel % ASTM D5185m >20 0 <1 5 Fuel % ASTM D5185m >20 0 <1 5 Fuel % ASTM D524 >5 8.0 14.2 8.4 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7624 >20 8.0 12.0 10.0 Sulfation Abs/.mm< *ASTM D7415 >30 19.4	Calcium	ppm	ASTM D5185m	1070	887	879	924
SulfurppmASTM D5185m2060274421052852CONTAMINANTSmethodlimit/basecurrenthistory1history2SiliconppmASTM D5185m>204109SodiumppmASTM D5185m>20494PotassiumppmASTM D5185m>200<15Fuel%ASTM D3524>58.014.28.4INFRA-REDmethodlimit/basecurrenthistory1history2Soot %%*ASTM D7844>30.71.61.1NitrationAbs/cm*ASTM D7624>208.012.010.0SulfationAbs/.1mm*ASTM D7415>3019.423.221.1FLUID DEGRADATIONmethodlimit/basecurrenthistory1history2OxidationAbs/.1mm*ASTM D7414>2515.320.617.0	Phosphorus	ppm			941	813	897
CONTAMINANTSmethodlimit/basecurrenthistory1history2SiliconppmASTM D5185m>204109SodiumppmASTM D5185m>20494PotassiumppmASTM D5185m>200<15Fuel%ASTM D5185m>200<15SodiumppmASTM D5185m>200<15Fuel%ASTM D5185m>200<15Soot %%ASTM D7824>58.014.28.4INFRA-REDmethodlimit/basecurrenthistory1history2Soot %%*ASTM D7844>30.71.61.1NitrationAbs/cm*ASTM D7624>208.012.010.0SulfationAbs/.imm*ASTM D7415>3019.423.221.1FLUID DEGRADATIONmethodlimit/basecurrenthistory1history2OxidationAbs/.imm*ASTM D7414>2515.320.617.0	Zinc	ppm	ASTM D5185m	1270	1117	997	1092
Silicon ppm ASTM D5185m >20 4 10 9 Sodium ppm ASTM D5185m 4 9 4 Potassium ppm ASTM D5185m >20 0 <1	Sulfur	ppm	ASTM D5185m	2060	2744	2105	2852
Sodium ppm ASTM D5185m 4 9 4 Potassium ppm ASTM D5185m >20 0 <1 5 Fuel % ASTM D5185m >20 0 <14.2	CONTAMINAN	TS	method	limit/base	current	history1	
Potassium ppm ASTM D5185m >20 0 <1		ppm	ASTM D5185m	>20	4	10	9
Fuel % ASTM D3524 >5 8.0 14.2 8.4 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.7 1.6 1.1 Nitration Abs/cm *ASTM D7624 >20 8.0 12.0 10.0 Sulfation Abs/.1mm *ASTM D7415 >30 19.4 23.2 21.1 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 15.3 20.6 17.0		ppm	ASTM D5185m		4	9	
INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.7 1.6 1.1 Nitration Abs/cm *ASTM D7624 >20 8.0 12.0 10.0 Sulfation Abs/.1mm *ASTM D7415 >30 19.4 23.2 21.1 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 15.3 20.6 17.0			ASTM D5185m	>20			
Soot % % *ASTM D7844 >3 0.7 1.6 1.1 Nitration Abs/cm *ASTM D7624 >20 8.0 12.0 10.0 Sulfation Abs/.1mm *ASTM D7615 >30 19.4 23.2 21.1 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 15.3 20.6 17.0	Fuel	%	ASTM D3524	>5	8.0	14.2	8.4
Nitration Abs/cm *ASTM D7624 >20 8.0 12.0 10.0 Sulfation Abs/.1mm *ASTM D7415 >30 19.4 23.2 21.1 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 15.3 20.6 17.0	INFRA-RED			limit/base			
Sulfation Abs/.1mm *ASTM D7415 >30 19.4 23.2 21.1 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 15.3 20.6 17.0							
FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 15.3 20.6 17.0	Nitration	Abs/cm	*ASTM D7624	>20	8.0	12.0	10.0
Oxidation Abs/.1mm *ASTM D7414 >25 15.3 20.6 17.0	Sulfation	Abs/.1mm	*ASTM D7415	>30	19.4	23.2	21.1
	FLUID DEGRA	DATION	method	limit/base	current	history1	history2
Base Number (BN) mg KOH/g ASTM D2896 9.8 8.5 6.4 7.2	Oxidation	Abs/.1mm	*ASTM D7414	>25	15.3	20.6	17.0
	Base Number (BN)	mg KOH/g	ASTM D2896	9.8	8.5	6.4	7.2




4.0 Base | 0.0

Jan31/19

OIL ANALYSIS REPORT

VISUAL

Jun16/22

0ct21/19

Dec31/22

Feb20/23

VIOUAL		method	initi bas	ourrent	matory	motor
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORM
Odor	scalar	*Visual	NORML	NORML	NORML	NORM
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROP	ERTIES	method	limit/bas	se current	history1	histor
Visc @ 100°C	cSt	ASTM D445	15.4	12.4	• 10.7	12.4
GRAPHS						
Ferrous Alloys						
70 iron						
60 - chromium						
50						
40 30	1		Λ			
^a 30-	1~	\wedge	1			
20	V	\setminus /	1			
10		\sim	1			
0 passes and a superson and a supers						
	Dec31/22 -					
Jan31/19 Oct21/19 Jun16/22	Dec31/22 Feb20/23	Aug16/23	Nov28/23			
Non-ferrous Met	tals					
12 T						
10 - copper lead						
8						
5						
4						
			1			
In	20	X				
719 / 19	722	123	/23			
Jan31/19 0ct21/19 Jun16/22	Dec31/22 Feb20/23	Aug 16/23 -	Nov28/23			
Viscosity @ 100		A		_		
¹⁹ T				Base Num	ber	
18 - Abnormal				10.0 T Deservices and a second	\wedge	
17-			.0	, 8.0-	72	$\sim \Lambda$
16 Base			Base Number (mg KOH/g)		1. 1. 1. 1. 1.	~ (
3 13 Abnormal	~	\neg	(mg	6.0-	1	
3 13 Abnormal		\vee	Imper	4.0		
12			VI VI			
11				2.0		
10				0.0		
/19 + /	722	/23	/23	0.0	722 -	/23+
Jan31/19 Oct21/19 Jun16/22	Dec31/22 Feb20/23	Aug 16/23	Nov28/23	Jan 31/19 0ct21/19	Jun 16/22 Dec3 1/22	Feb 20/23 Aug 16/23
		A.	2	r o	·	A.
: WearCheck USA	- 501 Madis	on Ave Ca	ary, NC 275	513 GF L	Environmental - 82	21 - Ozarks Ha
: GFL0090340	Recieved	: 22	Dec 2023			3924 Olath
: 06042859	Diagnose		Dec 2023			Lebanon
: 10803467	Diagnosti	cian : We	s Davis			US 6

Unique Number : 10803467 Diagnostician : Wes Davis Test Package : FLEET (Additional Tests: PercentFuel) Certificate L2367 To discuss this sample report, contact Customer Service at 1-800-237-1369. landen.johnson@gflenv.com * - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Submitted By: GFL821, GFL824 and GFL829 - Landen Johnson

F:

Contact: Landen Johnson

T: (417)664-0010