

OIL ANALYSIS

(65639Z) Walgreens - Tractor [Walgreens - Tractor] 136A624 omponen

Diesel Engine

PETRO CANADA DURON SHP 10W30 (11 GAL)

DIAGNOSIS

Recommendation

Oil and filter change at the time of sampling has been noted. Resample at the next service interval to monitor.

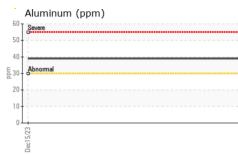
🔺 Wear

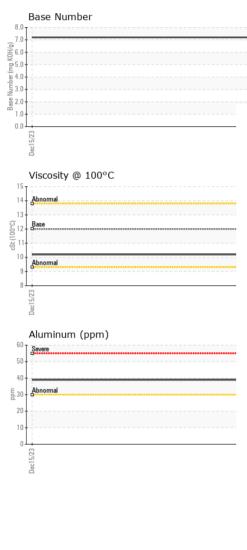
The copper level is abnormal. In the absence of other significant wear metals, suspect copper due to sources other than wear (i.e. cooling core).

Contamination

Elevated aluminum (Al) and/or lead (Pb) and potassium (K) levels in your metals analysis are likely a result of solder flux release into the lubricant and is common on new equipment/components. There is no indication of any contamination in the oil.

Fluid Condition


The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is acceptable for the time in service.


SIS REPC	NRT	Samp	le Rating Tre	end		WEAR
tor \624108						
				Dec2023		
SAMPLE INFORI	MATION	method	limit/base		history1	history2
Sample Number		Client Info		PCA0103689		
Sample Date	la ura	Client Info		15 Dec 2023		
Machine Age Oil Age	hrs	Client Info Client Info		37960 37960		
Oil Changed	hrs	Client Info		Changed		
Sample Status				ABNORMAL		
-						
CONTAMINAT	ION	method	limit/base	current	history1	history2
Fuel		WC Method	>5	<1.0		
Water		WC Method	>0.2	NEG		
Glycol		WC Method		NEG		
WEAR METAL	S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>80	55		
Chromium	ppm	ASTM D5185m	>5	3		
Nickel	ppm	ASTM D5185m	>2	1		
Titanium	ppm	ASTM D5185m		0		
Silver	ppm	ASTM D5185m	>3	0		
Aluminum	ppm	ASTM D5185m	>30	39		
Lead Copper	ppm ppm	ASTM D5185m ASTM D5185m	>30 >150	0 <u> 192</u>		
Tin	ppm	ASTM D5185m	>5	4		
Vanadium	ppm	ASTM D5185m	20	0		
Cadmium	ppm	ASTM D5185m		0		
ADDITIVES		method	limit/base	current	history1	history2
		ASTM D5185m				matory2
Boron Barium	ppm ppm	ASTM D5185m ASTM D5185m		28 0		
Molybdenum	ppm	ASTM D5185m	50	46		
Manganese	ppm	ASTM D5185m		4		
Magnesium	ppm	ASTM D5185m	950	517		
Calcium	ppm	ASTM D5185m	1050	1689		
Phosphorus	ppm	ASTM D5185m	995	713		
Zinc	ppm	ASTM D5185m	1180	880		
Sulfur	ppm	ASTM D5185m	2600	2032		
CONTAMINAN	TS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>20	8		
Sodium	ppm	ASTM D5185m		3		
Potassium	ppm	ASTM D5185m	>20	114		
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>3	0.8		
Nitration	Abs/cm	*ASTM D7644	>20	10.6		
Sulfation	Abs/.1mm	*ASTM D7624	>30	22.9		
					biotomat	history 0
FLUID DEGRA			limit/base		history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	23.7		
Base Number (BN)	mg KOH/g	ASTM D2896		7.2		

Sample Rating Trend

OIL ANALYSIS REPORT

Ś

	VISUAL		method	limit/base	current	history1	history2
	White Metal	scalar	*Visual	NONE	NONE		
	Yellow Metal	scalar	*Visual	NONE	NONE		
	Precipitate	scalar	*Visual	NONE	NONE		
	Silt	scalar	*Visual	NONE	NONE		
	Debris	scalar	*Visual	NONE	NONE		
	Sand/Dirt	scalar	*Visual	NONE	NONE		
C 03	Appearance	scalar	*Visual	NORML	NORML		
Davi E (2)	Odor	scalar	*Visual	NORML	NORML		
	Emulsified Water	scalar	*Visual	>0.2	NEG		
	Free Water	scalar	*Visual		NEG		
	FLUID PROPE	RTIES	method	limit/base	current	history1	history2
	Visc @ 100°C	cSt	ASTM D445		10.2		
	GRAPHS						
	Ferrous Alloys						
	60			1			
	50 - chromium						
	40 -						
	Ē.30 -						
	20						
	10						
	0						
	Dec15/23			5/23			
	Deci			Dec15/2			
	🔺 Non-ferrous Meta	ls					
	200 copper						
	150						
	150 -						
	톱 100 -						
	4						
	50 -						
	Dec15/23			Dec15/23			
				Dec			
	Viscosity @ 100°C	2			Base Number		
				8.0			
	14 - Abnormal			7.0			
	13			5.0 ·			
	Contraction 12			(D) 6.0 · BU 5.0 · bu 4.0 · wm 3.0 · 88 2.0 ·			
	ti 11-			a 4.0-			
	10			≥ 3.0			
	Abnormal			2.0·			
	8			0.0			
	0ec15/23			Dec15/23	Dec15/23 -		
	Dec1			Dec1	Dec1		
Laboratory Sample No. Lab Number Unique Number Test Package o discuss this sample report	: 06045888 er : 10806496 e : FLEET t, contact Customer Serv	Recieved Diagnos Diagnos rice at 1-8	d : 27 ed : 29 tician : Jon 800-237-1368	Dec 2023 Dec 2023 hathan Hester 9.	Transervi	Bat Contact: St smackes@tr	hrisphalt Driv h Borough, P US 1801 ephen Macke anservice.co
 Denotes test methods that tatements of conformity to specified 					ICGM 106:2012)		(610)837-810 (610)837-810

Contact/Location: Stephen Mackes - TSV1365