

OIL ANALYSIS REPORT

FUEL

history2

nistory1

FREIGHTLINER 106

Component **Diesel Engine**

PETRO CANADA DURON SHP

SAMPL

DIAGNOSIS

Recommendation

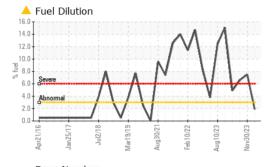
No corrective action is recommended at this time. Resample at the next service interval to monitor.

All component wear rates are normal.

Contamination

Light fuel dilution occurring. No other contaminants were detected in the oil.

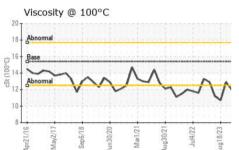
Fluid Condition

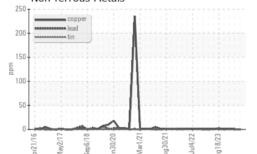

The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

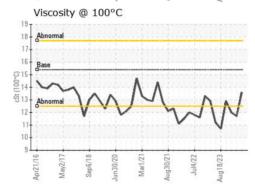
616e					
15W40 (6 GAL)	r2016 May2017	Sep2018 Jun2020	Mar2021 Aug2021 Jul2022	Aug2023	
E INFORMATION	method	limit/base	current	ent h	
Lumbar	Client Info		CEL 0007470	CELO	

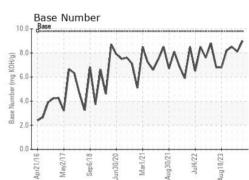
Sample Number		Client Info		GFL0087478	GFL0087497	GFL0087506
Sample Date		Client Info		19 Jan 2024	30 Nov 2023	17 Nov 2023
Machine Age	hrs	Client Info		6064	5926	5862
Oil Age	hrs	Client Info		138	274	210
Oil Changed	0	Client Info		N/A	Not Changd	Changed
Sample Status				MARGINAL	SEVERE	SEVERE
	IONI	and the sale	11			
CONTAMINAT	ION	method	limit/base	current	history1	history2
Water		WC Method	>0.2	NEG	NEG	NEG
Glycol		WC Method		NEG	NEG	NEG
WEAR METAL	S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>90	2	9	15
Chromium	ppm	ASTM D5185m	>20	<1	<1	3
Nickel	ppm	ASTM D5185m	>2	0	0	0
Titanium	ppm	ASTM D5185m	>2	0	<1	<1
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m	>20	2	2	2
Lead	ppm	ASTM D5185m	>40	<1	0	<1
Copper	ppm	ASTM D5185m	>330	0	<1	<1
Tin	ppm	ASTM D5185m	>15	0	0	<1
Vanadium	ppm	ASTM D5185m		<1	<1	<1
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	5	15	17
Barium	ppm	ASTM D5185m	0	0	0	0
Molybdenum	ppm	ASTM D5185m	60	56	54	59
Manganese	ppm	ASTM D5185m	0	0	0	<1
Magnesium	ppm	ASTM D5185m	1010	928	755	879
Calcium	ppm	ASTM D5185m	1070	1014	993	1079
Phosphorus	ppm	ASTM D5185m	1150	1021	869	995
Zinc	ppm	ASTM D5185m	1270	1240	1005	1195
Sulfur	ppm	ASTM D5185m	2060	3282	2628	3048
CONTAMINAN	TS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	4	5	9
Sodium	ppm	ASTM D5185m		<1	2	1
Potassium	ppm	ASTM D5185m	>20	2	0	1
Fuel	%	ASTM D3524	>3.0	<u> </u>	7.5	6.6
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>6	0.1	0.2	0.2
Nitration	Abs/cm	*ASTM D7624	>20	4.8	6.6	6.7
Sulfation	Abs/.1mm	*ASTM D7415	>30	17.2	17.9	18.0
FLUID DEGRAD	DATION	method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	13.0	13.9	14.0
Base Number (BN)	mg KOH/g	ASTM D2896	9.8	9.0	8.1	8.5
Dase Number (DIV)	my Kori/g	AO I WI DZ030	5.0	5.0	0.1	0.0

OIL ANALYSIS REPORT


VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	LIGHT	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG


10.0 - Base (B/HOX Bu 6.0 -	_		1	1	\sim	M	√ ~
9.0 - 0.8 (OH/d) 9.0 - 0.0 (OH/d) 9.0 -	1	V۷	V	V			
0.0 Apr21/16	May2/17 -	Sep6/18	Jun30/20	Mar1/21	Aug30/21	Jul4/22	Aug18/23




Ferrous Alloys 250 200 100 Non-ferrous Metals

GRAPHS

Certificate L2367

Laboratory Sample No. Lab Number Unique Number

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 : 06066401

: GFL0087478 : 10843078

Recieved : 22 Jan 2024 Diagnosed Diagnostician : Wes Davis

: 24 Jan 2024

Test Package : FLEET (Additional Tests: PercentFuel) To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

GFL Environmental - 331 - Columbus

180 Ada Moore Rd Columbus, NC US 28722

F: (252)617-2494

Contact: Matt Segars matt.segars@gflenv.com T: (800)207-6618