

OIL ANALYSIS REPORT

Sample Rating Trend

WE

Mad2018 Apr2019 Mad2020 De2020 Apr2021 Aug2021 Mad2022 Apr2023

WEAR

10627C AUTOCAR ACX

Component
Natural Cas Engin

Natural Gas Engine

PETRO CANADA DURON GEO LD 15W40 (28 QTS)

DIAGNOSIS

Recommendation

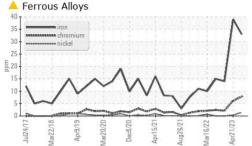
The oil change at the time of sampling has been noted. No corrective action is recommended at this time. Resample at the next service interval to monitor.

Wear

The chromium level is abnormal. All other component wear rates are normal.

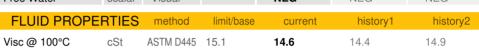
Contamination

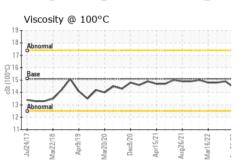
There is no indication of any contamination in the oil


Fluid Condition

The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

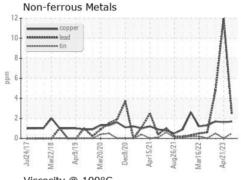
28 Q1S)		ul2017 Mar20	18 Apr2019 Mar2020 De	pc2020 Apr2021 Aug2021 Mar202	2 Apr2023	
SAMPLE INFOR	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		GFL0103163	GFL0056691	GFL0052288
Sample Date		Client Info		23 Jan 2024	21 Apr 2023	07 Sep 2022
Machine Age	hrs	Client Info		7438	6006	4699
Oil Age	hrs	Client Info		0	1361	694
Oil Changed		Client Info		Changed	Changed	Changed
Sample Status				ABNORMAL	NORMAL	NORMAL
CONTAMINAT	ION	method	limit/base	current	history1	history2
Water		WC Method	>0.1	NEG	NEG	NEG
WEAR METAL	.S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>50	33	39	14
Chromium	ppm	ASTM D5185m	>4	<u>^</u> 8	6	2
Nickel	ppm	ASTM D5185m	>2	1	<1	0
Titanium	ppm	ASTM D5185m		<1	0	0
Silver	ppm	ASTM D5185m	>3	0	0	0
Aluminum	ppm	ASTM D5185m	>9	4	4	4
Lead	ppm	ASTM D5185m	>30	2	12	5
Copper	ppm	ASTM D5185m	>35	2	2	2
Tin	ppm	ASTM D5185m	>4	<1	0	<1
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	50	3	<1	6
Barium	ppm	ASTM D5185m	5	0	0	0
Molybdenum	ppm	ASTM D5185m	50	58	61	55
Manganese	ppm	ASTM D5185m	0	<1	1	<1
Magnesium	ppm	ASTM D5185m	560	571	654	498
Calcium	ppm	ASTM D5185m	1510	1575	1783	1588
Phosphorus	ppm	ASTM D5185m	780	752	798	682
Zinc	ppm	ASTM D5185m	870	979	1061	947
Sulfur	ppm	ASTM D5185m	2040	2503	2735	2336
CONTAMINAN	ITS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>+100	16	13	16
Sodium	ppm	ASTM D5185m		4	12	8
Potassium	ppm	ASTM D5185m	>20	4	2	2
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844		0	0	0
Nitration	Abs/cm	*ASTM D7624	>20	13.0	12.9	12.4
Sulfation	Abs/.1mm	*ASTM D7415		26.0	25.4	25.1
FLUID DEGRAI	OITAC	method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	21.1	22.0	22.0
Base Number (BN)	mg KOH/g	ASTM D2896	10.2	2.8	2.0	4.1
(=)	3 29					

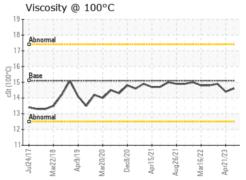

OIL ANALYSIS REPORT

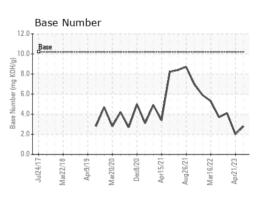


	iro manana ch	romium						1
-					-1-1-1			1
		^	~ /	1	۸		,	1
1	1		~	V	\vee		~	
	. /					1 /		
1	_/		THE REAL PROPERTY.	-	and the same	V	***************************************	- Argenta
	Mar22/18	Apr9/19	Mar20/20	Dec8/20	Apr15/21	Aug26/21	Mar16/22	Ans 193

VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.1	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
	DTIEO		11 11 /1		1111	111


12.0 T	e mur	nber							
Base (mg KOH/g) 8.0 - 4.					- 1	1			
6.0					-/				
4.0			^^	$ \wedge $	N		1	1	
2.0								-11	
0.0	- E	- 6	20 -	20 -	12	71-	22		
Jul24/	Mar22/18	Apr9/19	Mar20/	Dec8/20	Apr15/	Aug26/21	Mar16/		





Ferrous Alloys 35 25 [20

GRAPHS

Certificate L2367

Laboratory

Sample No. Lab Number Unique Number : 10846030 Test Package : FLEET

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 : GFL0103163 : 06069353

Recieved

: 24 Jan 2024 : 26 Jan 2024 Diagnosed Diagnostician : Sean Felton

GFL Environmental - 001 - Raleigh(CNG)

3741 Conquest Drive Garner, NC US 27529

Contact: Craig Johnson craig.johnson@gflenv.com T: (919)662-7100

To discuss this sample report, contact Customer Service at 1-800-237-1369. * - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

F: (919)662-7130