

OIL ANALYSIS REPORT

Sample Rating Trend

Diesel Engine PETRO CANADA DURON SHP 15W40 (--- GAL)

	SAMPLE INFORI	MATION	method	limit/base	current	history1	history2		
	Sample Number		Client Info		GFL0108693	GFL0105859	GFL0105848		
ource of the	Sample Date		Client Info		23 Jan 2024	21 Dec 2023	20 Dec 2023		
level. We advise	Machine Age	hrs	Client Info		14630	15345	14300		
tem. Oil and	Oil Age	hrs	Client Info		0	14095	14095		
has been ample to	Oil Changed		Client Info		Changed	Changed	Not Changd		
	Sample Status				ABNORMAL	NORMAL	NORMAL		
	CONTAMINAT	ION	method	limit/base	current	history1	history2		
al.	Water		WC Method	>0.2	NEG	NEG	NEG		
high. There is	WEAR METAL	S	method	limit/base	current	history1	history2		
in the oil.	Iron	ppm	ASTM D5185m	>80	31	28	0		
	Chromium	ppm	ASTM D5185m	>5	1	<1	0		
ring the	Nickel	ppm	ASTM D5185m	>2	<1	<1	<1		
at there is	Titanium	ppm	ASTM D5185m		0	0	0		
l.	Silver	ppm	ASTM D5185m	>3	0	0	0		
	Aluminum	ppm	ASTM D5185m		5	2	<1		
	Lead	ppm	ASTM D5185m	>30	- <1	0	0		
	Copper	ppm	ASTM D5185m		3	2	<1		
	Tin	ppm	ASTM D5185m	>5	<1	0	0		
	Vanadium	ppm	ASTM D5185m		0	0	0		
	Cadmium	ppm	ASTM D5185m		0	0	0		
	ADDITIVES		method	limit/base	current	history1	history2		
	Boron	ppm	ASTM D5185m	0	15	3	4		
	Barium	ppm	ASTM D5185m		<1	<1	<1		
	Molybdenum	ppm	ASTM D5185m	60	69	64	60		
	Manganese	ppm	ASTM D5185m		1	<1	<1		
	Magnesium	ppm	ASTM D5185m	1010	660	1002	949		
	Calcium	ppm	ASTM D5185m	1070	771	1138	1025		
	Phosphorus	ppm	ASTM D5185m	1150	741	1155	1123		
	Zinc	ppm	ASTM D5185m	1270	927	1381	1278		
	Sulfur	ppm	ASTM D5185m	2060	2064	2991	3243		
	CONTAMINAN		method	limit/base	current	history1	history2		
	Silicon	ppm	ASTM D5185m		17	4	6		
	Sodium		ASTM D5185m		<u>▲</u> 698	7	2		
	Potassium	ppm	ASTM D5185m		9	<1	<1		
	Fuel	%	ASTM D3103III		▲ 4.9	<1.0	<1.0		
	Glycol	%	*ASTM D2982		NEG	NEG	NEG		
	INFRA-RED		method	limit/base	current	history1	history2		
	Soot %	%	*ASTM D7844	>3	0.9	0.7	0		
	Nitration	Abs/cm	*ASTM D7624			10.0	4.2		
					12.7				
	Sulfation	Abs/.1mm	*ASTM D7415		23.8	21.9	17.2		
			method	limit/base	current	history1	history2		
	FLUID DEGRAD		method	iiiiii/base	Current	Thistory	Thistory2		
	Oxidation		*ASTM D7414		20.3	19.7	12.8		

DIAGNOSIS

Recommendation

We advise that you check for the se coolant leak. Check for low coolant that you check the fuel injection sys filter change at the time of sampling noted. We recommend an early res monitor this condition.

Machine Id 4682M

Wear

All component wear rates are norm

Contamination

Sodium and/or potassium levels are a moderate amount of fuel present

Fluid Condition

Fuel is present in the oil and is lowe viscosity. The BN result indicates the suitable alkalinity remaining in the

OIL ANALYSIS REPORT

method

*Visual

*Visual

*Visual

*Visual

*Visual

*Visual

*Visual

*Visual

method

ASTM D445

scalar *Visual

scalar *Visual

Jul12/23

Feb23/23

an 8/22

lec21/23

Dec21/23

an23/24

lec20/23

an73/74

Dec20/23

scalar

scalar

scalar

scalar

scalar

scalar

scalar

scalar

cSt

limit/base

NONE

NONE

NONE

NONE

NONE

NONE

NORML

NORML

limit/base

>0.2

15.4

current

NONE

NONE

NONE

NONE

NONE

NONE

NORML

NORML

current

Base Number

10.0 T Base

NEG

NEG

🔺 11.5

history1

NONE

NONE

NONE

NONE

NONE

NONE

NORML

NORML

NEG

NEG

14.1

history

history2

NONE

NONE

NONE

NONE

NONE

NONE

NORML

NORML

history2

NEG

NEG

14.8

VISUAL

White Metal

Yellow Metal

Precipitate

Silt

Debris

Odor

70

60

50 40

30

20

10

10

ppm

2

19

Apr7/7

Sand/Dirt

Appearance

Free Water

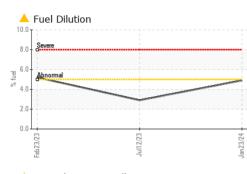
Visc @ 100°C

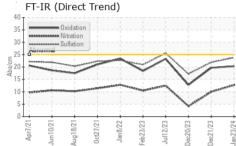
GRAPHS

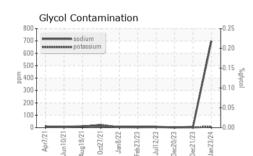
Ferrous Alloys

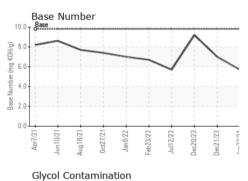
Aug 18/21 0ct27/21 Jan 8/77 Feb23/23

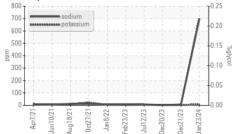
Non-ferrous Metals


Aug18/21


Viscosity @ 100°C


e lead


Emulsified Water


FLUID PROPERTIES

amir	nation	0.25 -0.20 -0.15 e ^e -0.10 -0.05	18- 17- (2-001) 314- 13- 12- 11- 10-	Abnormal Base Abnormal	21	21	3	3				(B)(HO) Buy Jack Base Munu 4.0 0.0 0.0	21	21	21	2	3	3+		3	4
0ct27/21	Jan 8/22 Feb 23/23 Jul 12/23 Dec 20/23	Dec21/23		Apr7/21 Jun10/21	Aug18/21	0ct27/21	Jan8/22 Feb23/23	Jul12/23	Dec20/23	Dec21/23	Jan 23/24	Apr7/	Jun10/21	Aug18/21	0ct27/21	Jan 8/22	Feb23/23	Jul12/23	Dec20/23	Dec21/23	Jan23/2
	Certificate 12367 To discuss this * - Denotes test Statements of d	Lab Number Unique Number Test Package sample report, t methods that	: GF : 060 : 108 : FL <i>cont</i> are o	846900 EET (A act Cus	393 additio atomei of the	nal To r Serv ISO 1	Rec Tes Dia ests: Fu vice at 1 17025 s	eived ted gnose relDilut -800-2 cope c	ed tion, 237-1	: 25 J : 01 F : 01 Fel Glyco <i>369.</i> credita	an 20 Feb 20 b 2024 II, Per a <i>tion.</i>	024 024 - Jonathan I centFuel	Hester)				St	62 terling ntact: volak(Michig 200 E g Heiç US Frank @gfle 86)82	ilmrid ghts, 483 k Wol env.co 25-95	lge MI 813 lak om
	D1 00070000 (Cam			0.40\ Da.												Cultur		J D			باما

Report Id: GFL415 [WUSCAR] 06070223 (Generated: 04/25/2024 06:32:48) Rev: 1

Submitted By: Frank Wolak

Page 2 of 2