

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id 927058

Fluid

Component Diesel Engine

PETRO CANADA DURON SHP 15W40 (--- GAL)

ON SHP 15W40 (-	GAL)	Nov2021 A	ug2022 Nov2022 Feb20	23 May2023 Aug2023 Nov2023	Jan2024	
SAMPLE INFOF	RMATION	method	limit/base	current	history1	history2
Sample Number		Client Info		GFL0100424	GFL0100421	GFL007691
Sample Date		Client Info		25 Jan 2024	14 Nov 2023	01 Aug 2023
Machine Age	hrs	Client Info		14629	14249	13665
Oil Age	hrs	Client Info		380	584	456
Oil Changed		Client Info		Changed	Changed	Changed
Sample Status				NORMAL	ABNORMAL	NORMAL
CONTAMINA	ΓΙΟΝ	method	limit/base	current	history1	history2
Fuel		WC Method	>3.0	<1.0	<1.0	<1.0
Water			>0.2	NEG	NEG	NEG
Glycol		WC Method		NEG	NEG	NEG
WEAR METAI	_S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>120	4	9	6
Chromium	ppm	ASTM D5185m	>20	<1	<1	<1
Nickel	ppm	ASTM D5185m	>5	3	<u> </u>	8
Titanium	ppm	ASTM D5185m		0	<1	<1
Silver	ppm	ASTM D5185m	>2	0	0	0
Aluminum	ppm	ASTM D5185m		2	4	<1
Lead	ppm		>40	1	1	2
Copper	ppm	ASTM D5185m		1	3	2
Tin	ppm	ASTM D5185m	>15	<1	<1	<1
Vanadium	ppm	ASTM D5185m		0	0	<1
Cadmium	ppm	ASTM D5185m		0	<1	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m		15	8	10
Barium	ppm	ASTM D5185m	0	0	0	0
Molybdenum	ppm	ASTM D5185m	60	60	61	62
Manganese	ppm	ASTM D5185m	0	<1	<1	<1
Magnesium	ppm	ASTM D5185m	1010	926	884	982
Calcium	ppm	ASTM D5185m	1070	1062	1065	1142
Phosphorus	ppm	ASTM D5185m	1150	1019	823	961
Zinc	ppm	ASTM D5185m	1270	1217	1141	1220
Sulfur	ppm	ASTM D5185m	2060	2829	2952	3156
CONTAMINA	NTS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	3	4	3
Sodium	ppm	ASTM D5185m		9	10	10
Potassium	ppm	ASTM D5185m	>20	2	8	<1
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>4	0.3	0.5	0.3
Nitration	Abs/cm	*ASTM D7624	>20	8.8	10.1	8.9
Sulfation	Abs/.1mm	*ASTM D7415	>30	20.0	22.0	20.3
FLUID DEGRA	DATION	method	limit/base			history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	17.0	18.9	17.2

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor.

Wear

All component wear rates are normal.

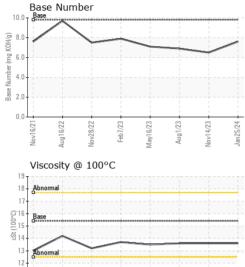
Contamination

There is no indication of any contamination in the oil.

Fluid Condition

The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

11


Vov16/21

Aug16/22

lov28/22

OIL ANALYSIS REPORT

VISUAL

Do ⁰	Nov14/23	White Metal Yellow Metal Precipitate Silt Debris Sand/Dirt Appearance Odor Emulsified Water Free Water	scalar scalar scalar scalar scalar scalar scalar scalar scalar scalar scalar	*Visual *Visual *Visual *Visual *Visual *Visual *Visual *Visual *Visual	NONE NONE NONE NONE NONE NORML NORML >0.2	NONE NONE NONE NONE NONE NORML NORML NEG NEG	NONE NONE NONE NONE NORML NORML NEG NEG	NONE NONE NONE NONE NONE NORML NORML NEG NEG		
		FLUID PROPE		method	limit/base	current	history1	history2		
		Visc @ 100°C	cSt	ASTM D445	15.4	13.6	13.6	13.6		
Feb7/23 - Feb7/23 - May 16/23 - Main 19/2		Non-ferrous Meta Non-ferrous Meta in blad Viscosity @ 100°C	Feb7/23	Aug123 + + + + + + + + + + + + + + + + + + +	400- 472/52/27 10.0- 4.0-	Nov16/21 Aug16/22 Nov28/22	reb1723	Aug1/23		
* - Denotes tes	t methods that	: GFL0100424 : 06080485 r : 10862576 e : FLEET contact Customer Serv are outside of the ISO 1	501 Madison Ave., Cary, NC 27513 Recieved : 05 Feb 2024 Diagnosed : 06 Feb 2024 Diagnostician : Wes Davis vice at 1-800-237-1369. 17025 scope of accreditation. the simple acceptance decision rule (JCC)				GFL Environmental - 900 - Antigo HC 1715 Deleglise St. Antigo, WI US 54409 Contact: Kirk Koss kirk.koss@gflenv.com T: (715)571-2784 GM 106:2012) F:			