

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Area (YA172344) GFL035 Machine Id 922035

Component Diesel Engine

DIESEL ENGINE OIL SAE 40 (42 QTS)

DIAGNOSIS	
Recommendation	

Resample at the next service interval to monitor. Please specify the brand, type, and viscosity of the oil on your next sample.

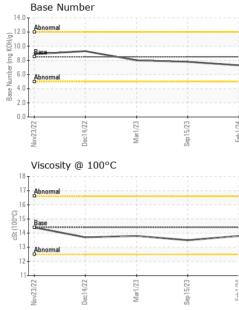
Wear

All component wear rates are normal.

Contamination

There is no indication of any contamination in the oil.

Fluid Condition


The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

Sample DateClient InfoO1 Feb 202415 Sep 202301 Mar 2023Machine AgehrsClient Info000Oil AgehrsClient Info600600600Oil ChangedClient InfoChangedChangedChangedSample StatusImit/baseNORMALNORMALNORMALCONTAMINATIONmethodlimit/basecurrenthistory1history2	AE 40 (42 QTS)		Nov2022	Dec2022	Mar2023 Sep2023	Feb2024	
Sample Date Client Info 01 Feb 2024 15 Sep 2023 01 Mar 2023 Machine Age hrs Client Info 0 0 0 Oil Age hrs Client Info 600 600 600 600 Sample Status Client Info Changed	SAMPLE INFOR	MATION	method	limit/base	current	history1	history2
Machine Age Oil Age Di AgehrsClient Info0000Oil Age Age Sample StatusClient Info600600600600600Oil Changed Sample StatusClient InfoChanged MORMALNORMALNORMALNORMALNORMALNORMALCONTAMINATIONmethodinnit/basecurrenthistory1history2FuelWC Method>0.2NEGNEGNEGGlycolWC Method>0.2NEGNEGNEGOther Method>0.2NEGNEGNEGNEGOther Method>0.2NEGNEGNEGNEGOther Method>0.2NEGNEGNEGNEGOther MethodSTM D5185m>20<1<11NickelppmASTM D5185m>20<1<11NickelppmASTM D5185m>202122LaadppmASTM D5185m>2021<11AluminumppmASTM D5185m>15<1<1<11AuminumppmASTM D5185m>15<1<1<11AuminumppmASTM D5185m>15<1<1<1<1AuminumppmASTM D5185m>15<1<1<1<1AuminumppmASTM D5185m>15<1<1<1<1NadatiumppmASTM D5185m>15<1 </th <th>Sample Number</th> <th></th> <th>Client Info</th> <th></th> <th>GFL0102336</th> <th>GFL0102288</th> <th>GFL0053175</th>	Sample Number		Client Info		GFL0102336	GFL0102288	GFL0053175
Oil Age Inrs Client Info 600 600 600 Oil Changed Client Info Changed Chang Chang Chang	Sample Date		Client Info		01 Feb 2024	15 Sep 2023	01 Mar 2023
Oil Changed Sample Status Client Info Changed NORMAL NORMAL NORMAL NORMAL NORMAL Eule WC Method >0.2 NEG NEG NEG NEG NEG Wear WC Method >0.2 NEG NEG NEG NEG Chromium ppm ASTM 05185m >10 16 Chromium ppm ASTM 05185m >20 21 1 21 Nickel ppm ASTM 05185m >20 2 1 2 Lead ppm ASTM 05185m >20 2 1 2 Lead ppm ASTM 05185m >1 1 1 1 Vanadium ppm ASTM 05185m >1 1 1 1 Vanadium ppm ASTM 05185m >1 0 0 0 Cadmium ppm ASTM 05185m 250 0 4 6 Barium ppm ASTM 05185m	Machine Age	hrs	Client Info		0	0	0
Sample Status NORMAL NORMAL NORMAL NORMAL NORMAL CONTAMINATION method imilibase current history1 history2 Fuel WC Method >3.0 <1.0 <1.0 <1.0 Water WC Method >0.2 NEG NEG NEG Glycol WC Method >0.2 NEG NEG NEG Wear WC Method >100 16 11 11 Chromium ppm ASTM D5185m >20 <1 <1 0 Nickel ppm ASTM D5185m >22 0 <1 0 Silver ppm ASTM D5185m >20 2 1 2 Lead ppm ASTM D5185m >20 0 0 0 Cadmium ppm ASTM D5185m >20 0 0 0 Cadmium ppm ASTM D5185m 1 33 6 1 1 1 1	Oil Age	hrs	Client Info		600	600	600
CONTAMINATION method imit/base current history1 history2 Fuel WC Method >3.0 <1.0	Oil Changed		Client Info		Changed	Changed	Changed
Fuel WC Method >3.0 <1.0	Sample Status				NORMAL	NORMAL	NORMAL
Water WC Method >0.2 NEG NEG NEG NEG Glycol WC Method Imit/base current history1 history2 Iron ppm ASTM D5185m >120 9 10 16 Chromium ppm ASTM D5185m >20 <1 <1 <1 Nickel ppm ASTM D5185m >2 0 <1 <1 Nickel ppm ASTM D5185m >2 0 <1 2 Lead ppm ASTM D5185m >20 2 1 2 2 Lead ppm ASTM D5185m >20 2 1 <1 <1 Vanadium ppm ASTM D5185m >30.0 1 3 6 6 Stron ppm ASTM D5185m >15 <1 <1 <1 <1 Vanadium ppm ASTM D5185m 10.0 64 66 59 Manganese ppm	CONTAMINAT	ION	method	limit/base	current	history1	history2
Glycol WC Method NEG NEG NEG WEAR METALS method limit/base current history1 history2 Iron ppm ASTM D5185m >120 9 10 16 Chromium ppm ASTM D5185m >20 <1 <1 <1 Nickel ppm ASTM D5185m >2 0 <1 0 Silver ppm ASTM D5185m >2 0 0 <1 Auminum ppm ASTM D5185m >20 2 1 2 Lead ppm ASTM D5185m >20 2 1 <1 <1 Vanadium ppm ASTM D5185m >15 <1 <1 <1 <1 Vanadium ppm ASTM D5185m 15 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 3 85	Fuel		WC Method	>3.0	<1.0	<1.0	<1.0
WEAR METALS method limit/base current history1 history2 Iron ppm ASTM D5185m >120 9 10 16 Chromium ppm ASTM D5185m >20 <1	Water		WC Method	>0.2	NEG	NEG	NEG
Iron ppm ASTM D5185m >120 9 10 16 Chromium ppm ASTM D5185m >20 <1	Glycol		WC Method		NEG	NEG	NEG
Chromium ppm ASTM D5185m >20 <1	WEAR METAL	S	method	limit/base	current	history1	history2
Nickel ppm ASTM D5185m >5 1 1 1 Titanium ppm ASTM D5185m >2 0 <1 0 Silver ppm ASTM D5185m >2 0 0 <1 Aluminum ppm ASTM D5185m >20 2 1 2 Lead ppm ASTM D5185m >40 0 0 0 Copper ppm ASTM D5185m >330 1 3 6 Tin ppm ASTM D5185m >15 <1 <1 <1 <1 Vanadium ppm ASTM D5185m 10 0 0 0 Cadmium ppm ASTM D5185m 100 64 66 59 Barium ppm ASTM D5185m 100 64 66 59 Magnesium ppm ASTM D5185m 100 64 66 59 Magnesium ppm ASTM D5185m 150 133	Iron	ppm	ASTM D5185m	>120	9	10	16
Titanium ppm ASTM D5185m >2 0 <1	Chromium	ppm	ASTM D5185m	>20	<1	<1	<1
Silver ppm ASTM D5185m >2 0 0 <1 Aluminum ppm ASTM D5185m >20 2 1 2 Lead ppm ASTM D5185m >40 0 0 0 Copper ppm ASTM D5185m >330 1 3 6 Tin ppm ASTM D5185m >15 <1 <1 <1 <1 Vanadium ppm ASTM D5185m >15 <1 <1 <1 <1 Vanadium ppm ASTM D5185m >15 <1 <1 <1 <1 Vanadium ppm ASTM D5185m 0 0 0 0 0 Cadmium ppm ASTM D5185m 100 64 66 59 Barium ppm ASTM D5185m 100 64 66 59 Magnessum ppm ASTM D5185m 100 64 66 59 Calcium ppm	Nickel	ppm	ASTM D5185m	>5	1	1	1
Aluminum ppm ASTM D5185m >20 2 1 2 Lead ppm ASTM D5185m >40 0 0 0 Copper ppm ASTM D5185m >330 1 3 6 Tin ppm ASTM D5185m >15 <1	Titanium	ppm	ASTM D5185m	>2	0	<1	0
Lead ppm ASTM D5185m >40 0 0 0 Copper ppm ASTM D5185m >330 1 3 6 Tin ppm ASTM D5185m >15 <1	Silver	ppm	ASTM D5185m	>2	0	0	<1
Copper ppm ASTM D5185m >330 1 3 6 Tin ppm ASTM D5185m >15 <1	Aluminum	ppm	ASTM D5185m	>20	2	1	2
Tin ppm ASTM D5185m >15 <1 <1 <1 <1 Vanadium ppm ASTM D5185m 0 0 0 0 Cadmium ppm ASTM D5185m 0 0 0 0 ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 250 0 4 6 Barium ppm ASTM D5185m 10 <1	Lead	ppm	ASTM D5185m	>40	0	0	0
Vanadium ppm ASTM D5185m 0 0 0 0 Cadmium ppm ASTM D5185m 0 0 0 0 ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 250 0 4 6 Barium ppm ASTM D5185m 10 <1 0 0 Molybdenum ppm ASTM D5185m 100 64 66 59 Magnesium ppm ASTM D5185m 100 64 66 59 Magnesium ppm ASTM D5185m 100 64 66 59 Calcium ppm ASTM D5185m 450 973 889 869 Calcium ppm ASTM D5185m 450 973 889 869 Calcium ppm ASTM D5185m 4250 2764 3057 3219 Sulfur ppm ASTM D5185m >22 2	Copper	ppm	ASTM D5185m	>330	1	3	6
Cadmium ppm ASTM D5185m 0 0 0 ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 250 0 4 6 Barium ppm ASTM D5185m 10 <1 0 0 0 Molybdenum ppm ASTM D5185m 100 64 66 59 Manganese ppm ASTM D5185m 100 64 66 59 Magnesium ppm ASTM D5185m 100 64 66 59 Calcium ppm ASTM D5185m 450 973 889 869 Calcium ppm ASTM D5185m 3000 1094 1139 1120 Phosphorus ppm ASTM D5185m 150 1287 1196 1187 Sulfur ppm ASTM D5185m >25 2 4 3 Sodium ppm ASTM D5185m >20	Tin	ppm	ASTM D5185m	>15	<1	<1	<1
ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 250 0 4 6 Barium ppm ASTM D5185m 10 <1	Vanadium	ppm	ASTM D5185m		0	0	0
Boron ppm ASTM D5185m 250 0 4 6 Barium ppm ASTM D5185m 10 <1 0 0 Molybdenum ppm ASTM D5185m 100 64 66 59 Manganese ppm ASTM D5185m 100 64 66 59 Magnesium ppm ASTM D5185m 100 64 66 59 Magnesium ppm ASTM D5185m 100 64 100 <1 Magnesium ppm ASTM D5185m 450 973 889 869 Calcium ppm ASTM D5185m 3000 1094 1139 1120 Phosphorus ppm ASTM D5185m 1350 1287 1196 1187 Sulfur ppm ASTM D5185m 1350 1287 1196 1187 Sulfur ppm ASTM D5185m >25 2 4 3 Sodium ppm ASTM D5185m <td< th=""><th>Cadmium</th><th>ppm</th><th>ASTM D5185m</th><th></th><th>0</th><th>0</th><th>0</th></td<>	Cadmium	ppm	ASTM D5185m		0	0	0
Barium ppm ASTM D5185m 10 <1	ADDITIVES		method	limit/base	current	history1	history2
Molybdenum ppm ASTM D5185m 100 64 66 59 Manganese ppm ASTM D5185m <1 0 <1 Magnesium ppm ASTM D5185m 450 973 889 869 Calcium ppm ASTM D5185m 3000 1094 1139 1120 Phosphorus ppm ASTM D5185m 1150 1034 937 930 Zinc ppm ASTM D5185m 1350 1287 1196 1187 Sulfur ppm ASTM D5185m 4250 2764 3057 3219 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >216 2 1 2 Potassium ppm ASTM D5185m >20 1 3 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844	Boron	ppm	ASTM D5185m	250	0	4	6
Manganese ppm ASTM D5185m <1 0 <1 Magnesium ppm ASTM D5185m 450 973 889 869 Calcium ppm ASTM D5185m 3000 1094 1139 1120 Phosphorus ppm ASTM D5185m 1004 1139 1120 Phosphorus ppm ASTM D5185m 1150 1034 937 930 Zinc ppm ASTM D5185m 1350 1287 1196 1187 Sulfur ppm ASTM D5185m 4250 2764 3057 3219 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >25 2 4 3 Sodium ppm ASTM D5185m >20 1 3 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >4 0.8	Barium	ppm	ASTM D5185m	10	<1	0	0
Magnesium ppm ASTM D5185m 450 973 889 869 Calcium ppm ASTM D5185m 3000 1094 1139 1120 Phosphorus ppm ASTM D5185m 1150 1034 937 930 Zinc ppm ASTM D5185m 1350 1287 1196 1187 Sulfur ppm ASTM D5185m 4250 2764 3057 3219 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >25 2 4 3 Sodium ppm ASTM D5185m >216 2 1 2 Potassium ppm ASTM D5185m >20 1 3 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >4 0.8 0.6 0.7 Nitration Abs/.1mm *ASTM D7415	Molybdenum	ppm	ASTM D5185m	100	64		59
Calcium ppm ASTM D5185m 3000 1094 1139 1120 Phosphorus ppm ASTM D5185m 1150 1034 937 930 Zinc ppm ASTM D5185m 1350 1287 1196 1187 Sulfur ppm ASTM D5185m 4250 2764 3057 3219 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >25 2 4 3 Sodium ppm ASTM D5185m >216 2 1 2 Potassium ppm ASTM D5185m >20 1 3 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >4 0.8 0.6 0.7 Nitration Abs/cm *ASTM D7624 >20 8.6 7.5 8.0 Sulfation Abs/.1mm *ASTM D7415	Manganese	ppm	ASTM D5185m		<1		
Phosphorus ppm ASTM D5185m 1150 1034 937 930 Zinc ppm ASTM D5185m 1350 1287 1196 1187 Sulfur ppm ASTM D5185m 4250 2764 3057 3219 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >25 2 4 3 Sodium ppm ASTM D5185m >216 2 1 2 Potassium ppm ASTM D5185m >20 1 3 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >4 0.8 0.6 0.7 Nitration Abs/cm *ASTM D7624 >20 8.6 7.5 8.0 Sulfation Abs/.1mm *ASTM D7615 >30 20.5 19.9 20.0 FLUID DEGRADATION method limit	Magnesium	ppm	ASTM D5185m	450		889	
Zinc ppm ASTM D5185m 1350 1287 1196 1187 Sulfur ppm ASTM D5185m 4250 2764 3057 3219 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >25 2 4 3 Sodium ppm ASTM D5185m >216 2 1 2 Potassium ppm ASTM D5185m >20 1 3 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >4 0.8 0.6 0.7 Nitration Abs/cm *ASTM D7624 >20 8.6 7.5 8.0 Sulfation Abs/.1mm *ASTM D7415 >30 20.5 19.9 20.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414		ppm	ASTM D5185m	3000	1094	1139	
Sulfur ppm ASTM D5185m 4250 2764 3057 3219 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >25 2 4 3 Sodium ppm ASTM D5185m >216 2 1 2 Potassium ppm ASTM D5185m >20 1 3 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >4 0.8 0.6 0.7 Sulfation Abs/cm *ASTM D7624 >20 8.6 7.5 8.0 Sulfation Abs/.1mm *ASTM D7624 >20 8.6 7.5 9.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 16.1 15.0 15.0		ppm					
CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m<>25 2 4 3 Sodium ppm ASTM D5185m<>216 2 1 2 Potassium ppm ASTM D5185m<>20 1 3 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844<>4 0.8 0.6 0.7 Nitration Abs/cm *ASTM D7624<>20 8.6 7.5 8.0 Sulfation Abs/.1mm *ASTM D7615<>30 20.5 19.9 20.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414<>25 16.1 15.0 15.0		ppm			1287		
Silicon ppm ASTM D5185m >25 2 4 3 Sodium ppm ASTM D5185m >216 2 1 2 Potassium ppm ASTM D5185m >20 1 3 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >4 0.8 0.6 0.7 Nitration Abs/cm *ASTM D7624 >20 8.6 7.5 8.0 Sulfation Abs/.1mm *ASTM D7615 >30 20.5 19.9 20.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 16.1 15.0 15.0			ASTM D5185m	4250	2764	3057	3219
Sodium ppm ASTM D5185m >216 2 1 2 Potassium ppm ASTM D5185m >20 1 3 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >4 0.8 0.6 0.7 Nitration Abs/cm *ASTM D7624 >20 8.6 7.5 8.0 Sulfation Abs/.1mm *ASTM D7415 >30 20.5 19.9 20.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 16.1 15.0 15.0		ITS					
Potassium ppm ASTM D5185m >20 1 3 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >4 0.8 0.6 0.7 Nitration Abs/cm *ASTM D7624 >20 8.6 7.5 8.0 Sulfation Abs/.1mm *ASTM D7415 >30 20.5 19.9 20.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 16.1 15.0 15.0							
INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >4 0.8 0.6 0.7 Nitration Abs/cm *ASTM D7624 >20 8.6 7.5 8.0 Sulfation Abs/.1mm *ASTM D7415 >30 20.5 19.9 20.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 16.1 15.0 15.0							
Soot % % *ASTM D7844 >4 0.8 0.6 0.7 Nitration Abs/cm *ASTM D7624 >20 8.6 7.5 8.0 Sulfation Abs/.1mm *ASTM D7415 >30 20.5 19.9 20.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 16.1 15.0 15.0		ppm	ASTM D5185m	>20	1	3	2
Nitration Abs/cm *ASTM D7624 >20 8.6 7.5 8.0 Sulfation Abs/.1mm *ASTM D7415 >30 20.5 19.9 20.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 16.1 15.0 15.0							
Sulfation Abs/.1mm *ASTM D7415 >30 20.5 19.9 20.0 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 16.1 15.0 15.0							
FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 16.1 15.0 15.0							
Oxidation Abs/.1mm *ASTM D7414 >25 16.1 15.0 15.0				>30	20.5	19.9	20.0
	FLUID DEGRA	DATION		limit/base		history1	
Base Number (BN) mg KOH/g ASTM D2896 8.5 7.3 7.8 8.0							
	Base Number (BN)	mg KOH/g	ASTM D2896	8.5	7.3	7.8	8.0

OIL ANALYSIS REPORT

VISUAL

	White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
	Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
	Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
	Silt	scalar	*Visual	NONE	NONE	NONE	NONE
	Debris	scalar	*Visual	NONE	NONE	NONE	NONE
	Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Sep 15/23 Feb 1/24	Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Sep	Odor	scalar	*Visual	NORML	NORML	NORML	NORML
	Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
	Free Water	scalar	*Visual		NEG	NEG	NEG
	FLUID PROPE	RTIES	method	limit/base	current	history1	history2
	Visc @ 100°C	cSt	ASTM D445	14.4	13.8	13.5	13.8
	GRAPHS						
	Ferrous Alloys						
23	14 iron	\wedge	1				
Sep 15/23	12-						
	10						
	6						
	4						
	2						
	3/22	1/23 -	5/23	Feb1/24			
	Nov23/22 Dec14/22	Mar1/23	Sep 15/23	Feb			
	Non-ferrous Metal	s					
	10 copper						
	8 - second second tip						
	e dd	\sim					
	ā 4						
	2						
	0		CO.				
	Vov23/22 Dec14/22	Mar1/23	Sep 15/23	Feb1/24			
	_		Se	LL.			
	Viscosity @ 100°C				Base Number		
				14.0	Abnormal		
	17 Abnormal			12.0	T		
				H 10.0	Base		
	00 15 Base			(0,100) 8.0 9.8 Winnber 8.0 8.0 8.0 9.0 8 8.0			
				fundation fundat	Abnormal		
	13 Abnormal				+		
	12			2.0			
	11	23-	23 -	0.0	22	- 23	23
	Nov23/22 Dec14/22	Mar1/23	Sep 15/23	Feb1/24	Nov23/22 Dec14/22	Mar1/23	Sep 15/23 Feb 1/24
	2 U						~~
Laboratory	: WearCheck USA - 50				GFL En		35 - Greensboro
Sample No. Lab Number	: GFL0102336	Recei Teste		3 Feb 2024		1	1236 Elon Place
Lab Number Unique Number	: 06083452 : 10870897	Diagn		9 Feb 2024 9 Feb 2024 - W	es Davis		High Point, NC US 27263
Test Package		Biagh			cc Durio	Contact:	JORGE COSTA
s sample report,	contact Customer Serv					jorge.cos	sta@gflenv.com
	are outside of the ISO 1						: (336)668-3712
contormity to sp	pecifications are based o	on the sim	ple accepta	nce decision	rule (JCGM 106	5:2012)	F:

* - Denotes test method Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

To discuss this sample

Certificate L2367

Submitted By: JORGE COSTA