
OIL ANALYSIS REPORT

Sample Rating Trend

1

PETRO CANADA DURON SHP 15W40 (--- LTR)

DIAGNOSIS

Machine Id 529013 Component Diesel Engine

Recommendation

Resample at the next service interval to monitor.

Wear

Fluic

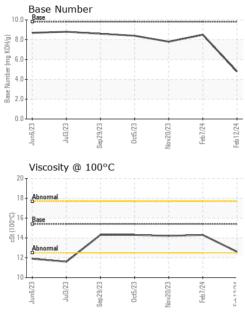
All component wear rates are normal.

Contamination

There is no indication of any contamination in the oil.

Fluid Condition

The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.


Sample Number Client Info GFL0061028 GFL0112769 GFL0091742 Sample Date Client Info 12 Feb 2024 07 Feb 2024 20 Nov 2023 Machine Age hrs Client Info 610 10688 10688 Oil Age hrs Client Info 610 10688 10688 Oil Changed Client Info NORMAL NORMAL NORMAL CONTAMINATION method imit/base current history1 history2 Fuel WC Method >0.2 NEG NEG NEG Grucol WC Method >0.2 NEG NEG NEG Nickel ppm ASTM D5185m >11 38 13 10 Chromium ppm ASTM D5185m >2 <1 0 0 Nickel ppm ASTM D5185m >2 <1 <1 0 Silver ppm ASTM D5185m >2 <1 <1 1 Kord Sint D5185m	SAMPLE INFOR	VIATION	method	limit/base	current	history1	history2
Sample Date Client Info 12 Feb 2024 07 Feb 2024 20 Nov 2023 Machine Age hrs Client Info 12000 111112 10688 Oil Age hrs Client Info 610 10688 10688 Oil Changed Client Info Changed NORMAL NORMAL NORMAL CONTAMINATION method limit/base current history1 history2 Fuel WC Method >0.2 NEG NEG NEG Glycol WC Method >0.2 NEG NEG NEG WEAR METALS method imit/base current history1 history2 Iron ppm ASTM 558m >110 38 13 10 Tranum ppm ASTM 558m >2 <1 0 0 Nickel ppm ASTM 558m >2 <1 2 1 Aluminum ppm ASTM 558m >4 1 1 1 Aluminum	Sample Number		Client Info		GFL0061028	GFL0112769	GFL0091742
Machine Age hrs Client Info 12000 11112 10688 Oil Age hrs Client Info 610 10688 10688 Oil Changed Client Info 610 10688 10688 Oil Changed Client Info 610 10688 10688 Sample Status Imit/base current History1 NoRMAL VCONTAMINATION method 100 <1.0 <1.0 Water WC Method >5 <1.0 <1.0 <1.0 Water WC Method >0.2 NEG NEG NEG Chromium ppm ASTM D5185m >10 38 13 10 Chromium ppm ASTM D5185m >2 <1 1 0 Nickel ppm ASTM D5185m >2 1 2 1 2 Itramium ppm ASTM D5185m >2 1 2 1 2 Rorn ppm ASTM D5185m >5 </th <th>Sample Date</th> <th></th> <th>Client Info</th> <th></th> <th>12 Feb 2024</th> <th>07 Feb 2024</th> <th>20 Nov 2023</th>	Sample Date		Client Info		12 Feb 2024	07 Feb 2024	20 Nov 2023
Oil Age hrs Client Info 610 10688 10688 Oil Changed Client Info Changed Not Changed Not Changed Sample Status Imit/base current History1 Nitery2 Fuel WC Method >5 <1.0 <1.0 Normal Water WC Method >0.2 NEG NEG NEG Water WC Method >0.2 NEG NEG NEG WeAR METALS method Imit/base current History1 History2 Iron ppm ASTM 05185m >110 38 13 10 Chromium ppm ASTM 05185m >2 <1 0 0 Iron ppm ASTM 05185m >2 <1 <1 <1 Lead ppm ASTM 05185m >2 1 <1 <1 Lead ppm ASTM 05185m >4 1 <1 <1 Lead ppm ASTM 0518		hrs	Client Info		12000	11112	
Oil Changed Client Info Changed NORMAL NormAAL NormAAL CONTAMINATION method limit/base current Nistory1 Nistory2 Fuel WC Method >5. <1.0	0						
Sample Status NORMAL NORMAL NORMAL NORMAL NORMAL CONTAMINATION method limit/base current history1 history2 Fuel WC Method >5 <1.0 <1.0 <1.0 Water WC Method >0.2 NEG NEG NEG Glycol WC Method NOR NEG NEG NEG WEAR METALS method limit/base current history1 history2 Iron ppm ASTM 05185m >110 38 13 10 Chromium ppm ASTM 05185m >2 <1 0 0 Nickel ppm ASTM 05185m >2 <1 1 <1 Lead ppm ASTM 05185m >4 1 <1 <1 Lead ppm ASTM 05185m >4 1 <1 <1 Lead ppm ASTM 05185m 0 0 0 0 Copper <th>0</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	0						
CONTAMINATION method limit/base current history1 history2 Fuel WC Method >5 <1.0 <1.0 <1.0 <1.0 Water WC Method >0.2 NEG NEG NEG Glycol WC Method NEG NEG NEG WEAR METALS method limit/base current history1 history2 Iron ppm ASTM 05185m >110 38 13 10 Chromium ppm ASTM 05185m >2 <1 0 0 Nickel ppm ASTM 05185m >2 <1 0 0 Aluminum ppm ASTM 05185m >2 <1 1 <1 Lead ppm ASTM 05185m >4 <1 <1 <1 Cadmium ppm ASTM 05185m 0 0 0 0 Cadmium ppm ASTM 05185m 0 6 2 0 Ba	0				•	U	
Fuel WC Method >5 <1.0	-				Noninae		NOTIMIZE
Water WC Method >0.2 NEG NEG NEG NEG Glycol WC Method Imit/base current history1 history2 Iron ppm ASTM D5185m >110 38 13 10 Chromium ppm ASTM D5185m >4 1 <1 0 Nickel ppm ASTM D5185m >2 <1 0 0 Titanium ppm ASTM D5185m >2 <1 0 0 Silver ppm ASTM D5185m >2 <1 0 0 Copper ppm ASTM D5185m >25 4 1 <1 2 Tin ppm ASTM D5185m >4 <1 <1 2 Tin ppm ASTM D5185m >4 <1 <1 <1 Vanadium ppm ASTM D5185m 0 0 0 0 Capper ppm ASTM D5185m 0 6	CONTAMINAT	ION	method	limit/base	current	history1	history2
Glycol WC Method NEG NEG NEG WEAR METALS method limit/base current history1 history2 Iron ppm ASTM D5185m >110 38 13 10 Chromium ppm ASTM D5185m >2 <1 0 0 Nickel ppm ASTM D5185m >2 <1 0 0 Aluminum ppm ASTM D5185m >2 <1 0 0 Aluminum ppm ASTM D5185m >45 3 0 0 0 Copper ppm ASTM D5185m >4 <1 <1 1 Lead ppm ASTM D5185m 0 0 0 0 Cadmium ppm ASTM D5185m 0 0 0 0 ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 0 6 1 1 <t< th=""><th>Fuel</th><th></th><th>WC Method</th><th>>5</th><th><1.0</th><th><1.0</th><th><1.0</th></t<>	Fuel		WC Method	>5	<1.0	<1.0	<1.0
WEAR METALS method limit/base current history1 history2 Iron ppm ASTM D5185m >110 38 13 10 Ohromium ppm ASTM D5185m >4 1 <1 0 Nickel ppm ASTM D5185m >2 <1 0 0 Titanium ppm ASTM D5185m >2 <1 <1 0 Aluminum ppm ASTM D5185m >2 <1 <1 0 Aluminum ppm ASTM D5185m >2 <1 <1 <1 Lead ppm ASTM D5185m >4 <1 <1 <1 Vanadium ppm ASTM D5185m 0 0 0 0 Cadmium ppm ASTM D5185m 0 6 6 5 Boron ppm ASTM D5185m 0 61 60 59 Marganese ppm ASTM D5185m 1070 10000 1	Water		WC Method	>0.2	NEG	NEG	NEG
Iron ppm ASTM D5185m >110 38 13 10 Chromium ppm ASTM D5185m >4 1 <1 0 0 Nickel ppm ASTM D5185m >2 <1 0 0 0 Silver ppm ASTM D5185m >2 <1 <1 0 Aluminum ppm ASTM D5185m >2 <1 <1 0 Aluminum ppm ASTM D5185m >4 1 <1 <1 Lead ppm ASTM D5185m >45 3 0 0 0 Copper ppm ASTM D5185m >4 <1 <1 1 1 Vanadium ppm ASTM D5185m 0 0 0 0 0 0 Cadmium ppm ASTM D5185m 0 61 60 59 9 Marganese ppm ASTM D5185m 0 <1 <1 1 1	Glycol		WC Method		NEG	NEG	NEG
Iron ppm ASTM D5185m >110 38 13 10 Chromium ppm ASTM D5185m >4 1 <1 0 0 Nickel ppm ASTM D5185m >2 <1 0 0 0 Silver ppm ASTM D5185m >2 <1 <1 0 Aluminum ppm ASTM D5185m >2 <1 <1 0 Aluminum ppm ASTM D5185m >4 1 <1 <1 Lead ppm ASTM D5185m >45 3 0 0 0 Copper ppm ASTM D5185m >4 <1 <1 1 1 Vanadium ppm ASTM D5185m 0 6 2 0 0 Cadmium ppm ASTM D5185m 0 61 60 59 Bara ppm ASTM D5185m 0 <1 <1 1 Maganesium ppm	WEAR METAL	9	method	limit/base	current	history1	history?
Chromium ppm ASTM D5185m >4 1 <1							
Nickel ppm ASTM D5185m >2 <1							
Titanium ppm ASTM D5185m 0 0 0 0 Silver ppm ASTM D5185m<>2 <1 <1 0 Aluminum ppm ASTM D5185m >25 4 1 <1 Lead ppm ASTM D5185m >45 3 0 0 Copper ppm ASTM D5185m >45 2 1 2 Tin ppm ASTM D5185m >4 <1 <1 <1 Vanadium ppm ASTM D5185m 0 0 0 0 Cadmium ppm ASTM D5185m 0 6 2 0 Boron ppm ASTM D5185m 0 61 60 59 Maganese ppm ASTM D5185m 0 <1 <1 <1 Magnesium ppm ASTM D5185m 1010 879 1026 984 Calcium ppm ASTM D5185m 1070 1000 1074 105							
Silver ppm ASTM D5185m >2 <1				>2			
Aluminum ppm ASTM D5185m >25 4 1 <1							
Lead ppm ASTM D5185m >45 3 0 0 Copper ppm ASTM D5185m >85 2 1 2 Tin ppm ASTM D5185m >4 <1 <1 <1 Vanadium ppm ASTM D5185m 0 0 0 0 Cadmium ppm ASTM D5185m 0 6 2 0 ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 0 6 2 0 Marganese ppm ASTM D5185m 0 61 60 59 Marganese ppm ASTM D5185m 0 <1 <1 <1 Marganesium ppm ASTM D5185m 1010 879 1026 984 Calcium ppm ASTM D5185m 1150 941 1068 1020 Zinc ppm ASTM D5185m 2060 2691 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
Copper ppm ASTM D5185m >85 2 1 2 Tin ppm ASTM D5185m >4 <1 <1 <1 Vanadium ppm ASTM D5185m 0 0 0 0 Cadmium ppm ASTM D5185m 0 0 0 0 ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 0 6 2 0 Barium ppm ASTM D5185m 0 0 0 0 Molyddenum ppm ASTM D5185m 0 <1 <1 <1 Magnesium ppm ASTM D5185m 1010 879 1026 984 Calcium ppm ASTM D5185m 1070 1000 1074 1050 Phosphorus ppm ASTM D5185m 1270 1206 1299 1269 Sulfur ppm ASTM D5185m 2060 2691 <th></th> <th>ppm</th> <th></th> <th></th> <th></th> <th></th> <th></th>		ppm					
Tin ppm ASTM D5185m >4 <1	Lead	ppm		>45			
Vanadium ppm ASTM D5185m 0 0 0 Cadmium ppm ASTM D5185m 0 0 0 0 ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 0 6 2 0 Barium ppm ASTM D5185m 0 0 0 0 0 Magnaese ppm ASTM D5185m 0 <1	Copper	ppm	ASTM D5185m	>85	2	1	2
Cadmium ppm ASTM D5185m 0 0 0 ADDITIVES method limit/base current history1 history2 Boron ppm ASTM D5185m 0 6 2 0 Barium ppm ASTM D5185m 0 0 0 0 0 Magnesium ppm ASTM D5185m 0 611 600 59 Magnesium ppm ASTM D5185m 0 <1	Tin	ppm	ASTM D5185m	>4			
ADDITIVESnethodlimit/basecurrenthistory1history2BoronppmASTM D5185m0620BariumppmASTM D5185m0000MolybdenumppmASTM D5185m60616059ManganeseppmASTM D5185m0<1<1<1MagnesiumppmASTM D5185m10108791026984CalciumppmASTM D5185m1070100010741050PhosphorusppmASTM D5185m1270120612991269SulfurppmASTM D5185m2060269131222918CONTAMINANTSnethodlimit/basecurrenthistory1history2SiliconppmASTM D5185m>30466SodiumppmASTM D5185m>20412INFRA-REDmethodlimit/basecurrenthistory1history2Soot %%*ASTM D7624>2010.48.08.8SulfationAbs/tm*ASTM D7624>2010.48.08.8SulfationAbs/tm*ASTM D7415>3021.319.320.7FLUID DEGRADATIONmethodlimit/basecurrenthistory1history2OxidationAbs/tm*ASTM D7414>2518.115.316.8	Vanadium	ppm	ASTM D5185m		0	0	0
Boron ppm ASTM D5185m 0 6 2 0 Barium ppm ASTM D5185m 0 0 0 0 Molybdenum ppm ASTM D5185m 60 61 60 59 Manganese ppm ASTM D5185m 0 <1 <1 <1 Magnesium ppm ASTM D5185m 1010 879 1026 984 Calcium ppm ASTM D5185m 1010 879 1026 984 Calcium ppm ASTM D5185m 1070 1000 1074 1050 Phosphorus ppm ASTM D5185m 1270 1206 1299 1269 Sulfur ppm ASTM D5185m 2060 2691 3122 2918 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >30 4 6 6 Sodium ppm ASTM D5185m	Cadmium	ppm	ASTM D5185m		0	0	0
Barium ppm ASTM D5185m 0 0 0 0 0 Molybdenum ppm ASTM D5185m 60 61 60 59 Manganese ppm ASTM D5185m 0 <1 <1 <1 Magnesium ppm ASTM D5185m 1010 879 1026 984 Calcium ppm ASTM D5185m 1070 1000 1074 1050 Phosphorus ppm ASTM D5185m 1070 1000 1074 1020 Zinc ppm ASTM D5185m 1270 1206 1299 1269 Sulfur ppm ASTM D5185m 2060 2691 3122 2918 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >30 4 6 6 6 5 5 104 1 2 INFRA-RED method limit/base current	ADDITIVES		method	limit/base	current	history1	history2
Molybdenum ppm ASTM D5185m 60 61 60 59 Manganese ppm ASTM D5185m 0 <1 <1 <1 Magnesium ppm ASTM D5185m 1010 879 1026 984 Calcium ppm ASTM D5185m 1010 879 1026 984 Calcium ppm ASTM D5185m 1070 1000 1074 1050 Phosphorus ppm ASTM D5185m 1070 1000 1074 1050 Zinc ppm ASTM D5185m 1270 1206 1299 1269 Sulfur ppm ASTM D5185m 2060 2691 3122 2918 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >30 4 6 6 Sodium ppm ASTM D5185m >20 4 1 2 INFRA-RED method limit/base	Boron	ppm	ASTM D5185m	0	6	2	0
Maganese ppm ASTM D5185m 0 <1	Barium	ppm	ASTM D5185m	0	0	0	0
Magnesium ppm ASTM D5185m 1010 879 1026 984 Calcium ppm ASTM D5185m 1070 1000 1074 1050 Phosphorus ppm ASTM D5185m 1150 941 1068 1020 Zinc ppm ASTM D5185m 1270 1206 1299 1269 Sulfur ppm ASTM D5185m 2060 2691 3122 2918 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >30 4 6 6 Sodium ppm ASTM D5185m >20 4 1 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D5185m >20 4 1 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7624 >2	Molybdenum	ppm	ASTM D5185m	60	61	60	59
Calcium ppm ASTM D5185m 1070 1000 1074 1050 Phosphorus ppm ASTM D5185m 1150 941 1068 1020 Zinc ppm ASTM D5185m 1270 1206 1299 1269 Sulfur ppm ASTM D5185m 2060 2691 3122 2918 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >30 4 6 6 Sodium ppm ASTM D5185m >20 4 1 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.8 0.4 0.5 Nitration Abs/cm *ASTM D7624 >20 10.4 8.0 8.8 Sulfation Abs/.tmm *ASTM D7415 >30 21.3 19.3 20.7 FLUID DEGRADATION method	Manganese	ppm	ASTM D5185m	0	<1	<1	<1
Phosphorus ppm ASTM D5185m 1150 941 1068 1020 Zinc ppm ASTM D5185m 1270 1206 1299 1269 Sulfur ppm ASTM D5185m 2060 2691 3122 2918 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >30 4 6 6 Sodium ppm ASTM D5185m >30 4 6 6 Sodium ppm ASTM D5185m >20 4 1 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.8 0.4 0.5 Nitration Abs/cm *ASTM D7624 >20 10.4 8.0 8.8 Sulfation Abs/.1mm *ASTM D7415 >30 21.3 19.3 20.7 FLUID DEGRADATION method limit/b	Magnesium	ppm	ASTM D5185m	1010	879	1026	984
Zinc ppm ASTM D5185m 1270 1206 1299 1269 Sulfur ppm ASTM D5185m 2060 2691 3122 2918 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >30 4 6 6 Sodium ppm ASTM D5185m >20 4 1 1 Potassium ppm ASTM D5185m >20 4 1 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.8 0.4 0.5 Nitration Abs/cm *ASTM D7624 >20 10.4 8.0 8.8 Sulfation Abs/.tmm *ASTM D7415 >30 21.3 19.3 20.7 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.tmm *ASTM D7414	Calcium	ppm	ASTM D5185m	1070	1000	1074	1050
Zinc ppm ASTM D5185m 1270 1206 1299 1269 Sulfur ppm ASTM D5185m 2060 2691 3122 2918 CONTAMINANTS method limit/base current history1 history2 Silicon ppm ASTM D5185m >30 4 6 6 Sodium ppm ASTM D5185m >30 4 1 1 Potassium ppm ASTM D5185m >20 4 1 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.8 0.4 0.5 Nitration Abs/cm *ASTM D7624 >20 10.4 8.0 8.8 Sulfation Abs/.tm *ASTM D7415 >30 21.3 19.3 20.7 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.tmm *ASTM D7414<	Phosphorus	ppm	ASTM D5185m	1150	941	1068	1020
CONTAMINANTSmethodlimit/basecurrenthistory1history2SiliconppmASTM D5185m>30466SodiumppmASTM D5185m2<11PotassiumppmASTM D5185m>20412INFRA-REDmethodlimit/basecurrenthistory1history2Soot %%*ASTM D7844>30.80.40.5NitrationAbs/cm*ASTM D7624>2010.48.08.8SulfationAbs/.tmm*ASTM D7415>3021.319.320.7FLUID DEGRADATIONmethodlimit/basecurrenthistory1history2OxidationAbs/.tmm*ASTM D7414>2518.115.316.8		ppm	ASTM D5185m	1270	1206	1299	1269
Silicon ppm ASTM D5185m >30 4 6 6 Sodium ppm ASTM D5185m 2 <1 1 Potassium ppm ASTM D5185m >20 4 1 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.8 0.4 0.5 Nitration Abs/cm *ASTM D7624 >20 10.4 8.0 8.8 Sulfation Abs/.imm *ASTM D7415 >30 21.3 19.3 20.7 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.imm *ASTM D7414 >25 18.1 15.3 16.8	Sulfur	ppm	ASTM D5185m	2060	2691	3122	2918
Silicon ppm ASTM D5185m >30 4 6 6 Sodium ppm ASTM D5185m >30 2 <1 1 Potassium ppm ASTM D5185m >20 4 1 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.8 0.4 0.5 Nitration Abs/cm *ASTM D7624 >20 10.4 8.0 8.8 Sulfation Abs/.imm *ASTM D7415 >30 21.3 19.3 20.7 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.imm *ASTM D7414 >25 18.1 15.3 16.8	CONTAMINAN	TS	method	limit/base	current	historv1	historv2
Sodium ppm ASTM D5185m 2 <1							
Potassium ppm ASTM D5185m >20 4 1 2 INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.8 0.4 0.5 Nitration Abs/cm *ASTM D7624 >20 10.4 8.0 8.8 Sulfation Abs/.1mm *ASTM D7415 >30 21.3 19.3 20.7 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 18.1 15.3 16.8				>00	-		-
INFRA-RED method limit/base current history1 history2 Soot % % *ASTM D7844 >3 0.8 0.4 0.5 Nitration Abs/cm *ASTM D7624 >20 10.4 8.0 8.8 Sulfation Abs/.tmm *ASTM D7415 >30 21.3 19.3 20.7 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.tmm *ASTM D7414 >25 18.1 15.3 16.8				× 20			
Soot % % *ASTM D7844 >3 0.8 0.4 0.5 Nitration Abs/cm *ASTM D7624 >20 10.4 8.0 8.8 Sulfation Abs/.1mm *ASTM D7415 >30 21.3 19.3 20.7 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 18.1 15.3 16.8		ррпі	ASTIVI DOTODIII	>20	4		2
Nitration Abs/cm *ASTM D7624 >20 10.4 8.0 8.8 Sulfation Abs/.1mm *ASTM D7415 >30 21.3 19.3 20.7 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 18.1 15.3 16.8	INFRA-RED		method	limit/base	current	history1	history2
Sulfation Abs/.1mm *ASTM D7415 >30 21.3 19.3 20.7 FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 18.1 15.3 16.8	Soot %	%	*ASTM D7844	>3	0.8	0.4	0.5
FLUID DEGRADATION method limit/base current history1 history2 Oxidation Abs/.1mm *ASTM D7414 >25 18.1 15.3 16.8	Nitration	Abs/cm	*ASTM D7624	>20	10.4	8.0	8.8
Oxidation Abs/.1mm *ASTM D7414 >25 18.1 15.3 16.8	Sulfation	Abs/.1mm	*ASTM D7415	>30	21.3	19.3	20.7
Oxidation Abs/.1mm *ASTM D7414 >25 18.1 15.3 16.8	FLUID DEGRAI	DAT <u>ION</u>	method	limi <u>t/base</u>	current	history1	history2
Dase Multiper (DIN) IIIY NUTIV ASTINI D2030 3.0 4.0 8.3 7.8		Abo/ 1mm	*ACTM D7/14	- 0E	10 1	15.0	16 0

Page 1 of 2

OIL ANALYSIS REPORT

VISUAL

CERTIFICATE L2367 TE	Laboratory Sample No. Lab Number Unique Number Test Package	: 10884346 Diagnosed : 17 Feb 2024 - Wes Davis US						
		(2.001) 13 13 10 EZ/8/Inf EZ/8/IN	0ct5/23 +	Nov20/23	0.0 0.2 0.2 0.2 0.2 Base Mumber (mg KOH(d) 0.0		Sep 2 4/23	Nav2U/23 Feb7/24
		Viscosity @ 100°			0.0 8.0 H(d) 9.0 9.0			
		Uiscocity @ 100%	0 0 ct5/23	Nov20/23	Feb12/24			
					/			
		Non-ferrous Meta	Is					
		Jun6/23	0ct5/23	Nov20/23 Feb7/24	Feb12/24			
2	L	25 <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>			/			
0ct5/23	Feb7/24	Ferrous Alloys			1			
		Visc @ 100°C GRAPHS	cSt	ASTM D445	15.4	12.6	14.3	14.2
		Free Water FLUID PROPE	scalar BTIES	*Visual method	limit/base	NEG current	NEG history1	NEG history2
Nov N	Feb Feb	Odor Emulsified Water	scalar scalar	*Visual *Visual	NORML >0.2	NORML NEG	NORML NEG	NORML NEG
0ct5/23 Nov20/23	Feb 7/24	Sand/Dirt Appearance	scalar scalar	*Visual *Visual	NONE NORML	NONE NORML	NONE NORML	NONE NORML
	Silt Debris	scalar scalar	*Visual *Visual	NONE NONE	NONE NONE	NONE NONE	NONE NONE	
		Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE

5

Submitted By: TECHNICIAN ACCOUNT