

OIL ANALYSIS REPORT

(AU402U) Supermarket - Tractor FREIGHTLINER 107A8839

Component **Diesel Engine**

PETRO CANADA DURON SHP 10W30 (11 GAL)

DIAGNOSIS

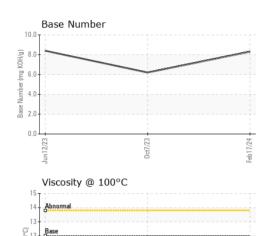
Recommendation

Resample at the next service interval to monitor.

All component wear rates are normal.

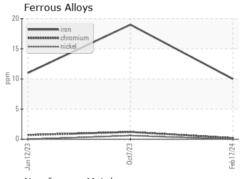
Contamination

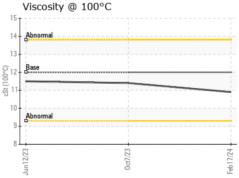
There is no indication of any contamination in the

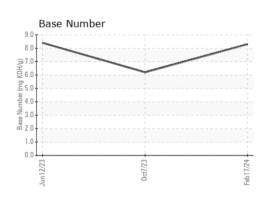

Fluid Condition

The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

,		Jun	2023	Oct2023 Feb20	24	
SAMPLE INFORM	ATION	method	limit/base	current	history1	history2
Sample Number		Client Info		PCA0116958	PCA0104066	PCA0099855
Sample Date		Client Info		17 Feb 2024	07 Oct 2023	12 Jun 2023
Machine Age	mls	Client Info		230887	214089	200618
Oil Age	mls	Client Info		16798	13471	12785
Oil Changed		Client Info		Changed	Changed	Not Changd
Sample Status				NORMAL	NORMAL	NORMAL
CONTAMINATIO	NC	method	limit/base	current	history1	history2
Fuel		WC Method	>5	<1.0	<1.0	<1.0
Water		WC Method	>0.2	NEG	NEG	NEG
Glycol		WC Method		NEG	NEG	NEG
WEAR METALS	;	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>80	10	19	11
Chromium	ppm	ASTM D5185m	>5	<1	1	<1
Nickel	ppm	ASTM D5185m	>2	0	<1	0
Titanium	ppm	ASTM D5185m		0	0	<1
Silver	ppm	ASTM D5185m	>3	0	<1	0
Aluminum	ppm	ASTM D5185m	>30	2	8	2
Lead	ppm	ASTM D5185m	>30	0	0	0
Copper	ppm	ASTM D5185m	>150	4	9	6
Tin	ppm	ASTM D5185m	>5	0	1	<1
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	2	7	7	13
Barium	ppm	ASTM D5185m	0	<1	0	0
Molybdenum	ppm	ASTM D5185m	50	63	63	64
Manganese	ppm	ASTM D5185m	0	0	<1	<1
Magnesium	ppm	ASTM D5185m	950	857	862	942
Calcium	ppm	ASTM D5185m	1050	964	1068	1167
Phosphorus	ppm	ASTM D5185m	995	839	952	998
Zinc	ppm	ASTM D5185m	1180	1110	1186	1202
Sulfur	ppm	ASTM D5185m	2600	2595	2527	3446
CONTAMINANT	S	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>20	4	6	4
Sodium	ppm	ASTM D5185m		0	3	2
Potassium	ppm	ASTM D5185m	>20	3	6	3
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>3	0.5	1.1	0.6
Nitration	Abs/cm	*ASTM D7624	>20	6.6	9.0	7.6
	Abs/.1mm	*ASTM D7415	>30	18.7	21.6	19.6
FLUID DEGRADA	ATION	method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	14.1	16.8	14.7
	mg KOH/g	ASTM D2896		8.3	6.2	8.4
===== (511)	99			0.0	V	0


OIL ANALYSIS REPORT


White Metal scalar Yellow Metal scalar Precipitate scalar	*Visual	NONE NONE	NONE NONE	NONE NONE	NONE NONE
Precipitate scalar	*Visual				NONE
<u> </u>		NONE	NONE		
			NONE	NONE	NONE
Silt scalar	*Visual	NONE	NONE	NONE	NONE
Debris scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt scalar	*Visual	NONE	NONE	NONE	NONE
Appearance scalar	*Visual	NORML	NORML	NORML	NORML
Odor scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water scalar	*Visual	>0.2	NEG	NEG	NEG
Free Water scalar	*Visual		NEG	NEG	NEG


FLUID PROPE	ERITES	method	ilmit/base		nistory i	nistoryz
Visc @ 100°C	cSt	ASTM D445	12.00	10.9	11.4	11.5

GRAPHS

Non-ferrou	ıs Metals	
coppe		
6 m dd 4		
2 -		On the first the State Control of the State Control
Jun12/23	Oct7/23	Feb17/24
Viscosity @	100°C	

Laboratory Sample No. Lab Number : 06095256

: WearCheck USA - 501 Madison Ave., Cary, NC 27513

: PCA0116958 Unique Number : 10888109 Test Package : FLEET

Received : 21 Feb 2024 **Tested** Diagnosed

: 21 Feb 2024 : 21 Feb 2024 - Wes Davis

Transervice - Shop 1071 - Supermarket-Dayton

60 A Tower Road Dayton, NJ US 08810

Contact: Brian Quinn bquinn@transervice.com

To discuss this sample report, contact Customer Service at 1-800-237-1369. * - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Report Id: TSV1071 [WUSCAR] 06095256 (Generated: 02/21/2024 21:26:57) Rev: 1

T:

F: