

OIL ANALYSIS REPORT

Sample Rating Trend

GLYCOL

Machine Id 921063-205336

Diesel Engine Fluid PETRO CANADA DURON SHP 15W40 (--- GAL)

DIAGNOSIS

Recommendation

We advise that you check for the source of the coolant leak. Check for low coolant level. Oil and filter change at the time of sampling has been noted. We recommend an early resample to monitor this condition.

Wear

All component wear rates are normal.

Contamination

Sodium and/or potassium levels are high.

Fluid Condition

The BN result indicates that there is suitable alkalinity remaining in the oil.

		PPILOLL	GLEDEE ADIEDES	Mag2023 002023 002023	Martin	
SAMPLE INFORI	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		GFL0114404	GFL0103954	GFL0093297
Sample Date		Client Info		25 Mar 2024	20 Dec 2023	18 Oct 2023
Machine Age	mls	Client Info		166603	9835	9248
Oil Age	mls	Client Info		0	9835	9248
Oil Changed		Client Info		Changed	Changed	Changed
Sample Status				ABNORMAL	NORMAL	ABNORMAL
CONTAMINAT	ION	method	limit/base	current	history1	history2
Fuel		WC Method	>5	<1.0	<1.0	<1.0
Water		WC Method	>0.2	NEG	NEG	NEG
WEAR METAL	S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>100	10	5	8
Chromium	ppm	ASTM D5185m	>20	0	0	<1
Nickel	ppm	ASTM D5185m	>4	0	0	<1
Titanium	ppm	ASTM D5185m		0	0	<1
Silver	ppm	ASTM D5185m	>3	0	0	0
Aluminum	ppm	ASTM D5185m	>20	3	3	2
Lead	ppm	ASTM D5185m	>40	0	0	0
Copper	ppm	ASTM D5185m	>330	0	0	<1
Tin	ppm	ASTM D5185m	>15	<1	2	<1
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	<1
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	10	<1	3
Barium	ppm	ASTM D5185m	0	0	0	3
Molybdenum	ppm	ASTM D5185m	60	68	63	79
Manganese	ppm	ASTM D5185m	0	<1	<1	0
Magnesium	ppm	ASTM D5185m	1010	864	904	968
Calcium	ppm	ASTM D5185m	1070	1133	1024	1257
Phosphorus	ppm	ASTM D5185m	1150	1059	1017	1102
Zinc	ppm	ASTM D5185m	1270	1235	1303	1283
Sulfur	ppm	ASTM D5185m	2060	3464	2986	3609
CONTAMINAN	ITS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	3	2	4
Sodium	ppm	ASTM D5185m		<u> </u>	137	A 275
Potassium	ppm	ASTM D5185m	>20	118	78	1 23
Glycol	%	*ASTM D2982		NEG	0.0	NEG
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>3	0.7	0.7	0.3
Nitration	Abs/cm	*ASTM D7624	>20	9.4	8.0	7.4
Sulfation	Abs/.1mm	*ASTM D7415	>30	20.5	19.8	19.0
FLUID DEGRA		method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	16.0	15.0	14.8
Base Number (BN)	mg KOH/g	ASTM D2896	9.8	9.2	9.3	9.5
. ,						

OIL ANALYSIS REPORT

VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPE	RTIES	method	limit/base	current	history1	history2
Visc @ 100°C	cSt	ASTM D445	15.4	14.5	14.2	14.5
GRAPHS						
Ferrous Alloys						
iron 🗼						
25 - nickel						
20						
15	\mathbf{i}					
10						
5		~				
	53	23	24			
Apr5// 0ct12// Apr14//	Aug21/2	0ct18/2 Dec20/2	Mar25/2			
Non-ferrous Meta	ls	_	-			
10 copper 1						
8 -						
6-						
4						
2						
			\rightarrow			
Apr5/22 ct12/22 sr14/23	g21/23	ct18/23 sc20/23	ar25/24			
∼ ĕ ₹ Viscositv @ 100º0	Au	De Oi	W			
¹⁹ T	-		10.0	Base Number		
18 - Abnormal			10.0		/	
17			~ 8.0		/	

(mg KOH/g)

mber

6

4 (Base

0.0

Mar25/24 -Oct18/23 Apr5/22 0ct12/22 Aug21/23 Dec20/23 Anr5/77 Apr14/23 Aug21/23 Apr14/23 Oct18/23 Laboratory : WearCheck USA - 501 Madison Ave., Cary, NC 27513 GFL Environmental - 865 - East Mount Hauling Sample No. : GFL0114404 Received : 03 Apr 2024 7213 East Mount Houston Road Lab Number : 06137973 Tested : 09 Apr 2024 Houston, TX Unique Number : 10962781 Diagnosed : 09 Apr 2024 - Jonathan Hester Test Package : FLEET (Additional Tests: Glycol) Contact: Saul Castillo Certificate 12367 To discuss this sample report, contact Customer Service at 1-800-237-1369. saul.castillo@gflenv.com * - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

Report Id: GFL865 [WUSCAR] 06137973 (Generated: 04/09/2024 09:57:38) Rev: 1

¹⁶ي

ê 15

5 14

13 Abnor 12 11-

US 77050

T:

F:

Mar25/24

Dec20/23