

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id
929037
Component
Diesel Engine
Fluid

PETRO CANADA DURON SHP 15W40 (--- GAL)

DIAGNOSIS

Recommendation

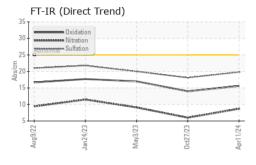
Resample at the next service interval to monitor.

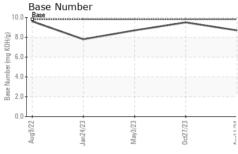
Wear

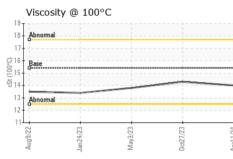
All component wear rates are normal.

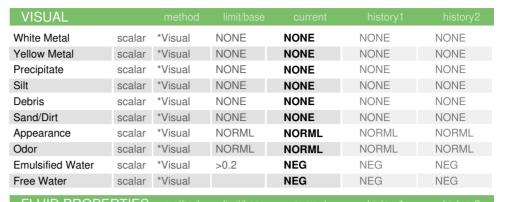
Contamination

There is no indication of any contamination in the oil

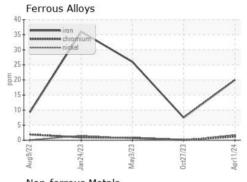

Fluid Condition

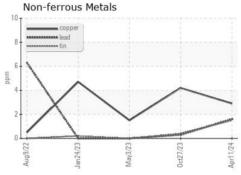

The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

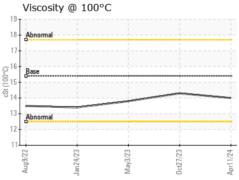

SAMPLE INFOR	RMATION	method				history2
Sample Number		Client Info		GFL0113950	GFL0086741	GFL0071273
Sample Date		Client Info		11 Apr 2024	27 Oct 2023	03 May 2023
Machine Age	hrs	Client Info		11491	10965	10318
Oil Age	hrs	Client Info		526	10965	10318
Oil Changed		Client Info		Changed	Changed	Not Changd
Sample Status				NORMAL	NORMAL	NORMAL
CONTAMINA	ΓΙΟΝ	method	limit/base	current	history1	history2
Fuel		WC Method	>3.0	<1.0	<1.0	<1.0
Water		WC Method	>0.2	NEG	NEG	NEG
Glycol		WC Method		NEG	NEG	NEG
WEAR METAI	LS	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>120	20	8	26
Chromium	ppm	ASTM D5185m	>20	1	<1	<1
Nickel	ppm	ASTM D5185m	>5	2	0	<1
Titanium	ppm	ASTM D5185m	>2	<1	<1	0
Silver	ppm	ASTM D5185m	>2	<1	0	0
Aluminum	ppm	ASTM D5185m	>20	6	3	9
Lead	ppm	ASTM D5185m	>40	2	<1	0
Copper	ppm	ASTM D5185m	>330	3	4	2
Tin	ppm	ASTM D5185m	>15	2	<1	0
Vanadium	ppm	ASTM D5185m		<1	0	0
Cadmium	ppm	ASTM D5185m		1	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	<1	5	2
Barium	ppm	ASTM D5185m	0	0	0	0
Molybdenum	ppm	ASTM D5185m	60	61	65	62
Manganese	ppm	ASTM D5185m	0	1	<1	<1
Magnesium	ppm	ASTM D5185m	1010	911	977	1007
Calcium	ppm	ASTM D5185m	1070	1063	1077	1119
Phosphorus	ppm	ASTM D5185m	1150	1102	1125	1109
Zinc	ppm	ASTM D5185m	1270	1206	1308	1355
Sulfur	ppm	ASTM D5185m	2060	3371	3096	4002
CONTAMINA	NTS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	8	14	7
Sodium	ppm	ASTM D5185m		11	65	5
Potassium	ppm	ASTM D5185m	>20	2	4	2
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>4	0.9	0.3	0.7
Nitration	Abs/cm	*ASTM D7624	>20	8.7	6.0	9.1
Sulfation	Abs/.1mm	*ASTM D7415	>30	19.8	18.1	20.0
FLUID DEGRA	DATION	method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	15.6	14.0	17.0

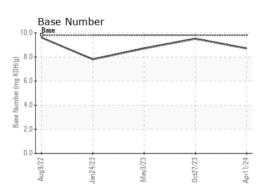


OIL ANALYSIS REPORT








FLUID PROPI	EHILO	method			riistory i	HISTORYZ
Visc @ 100°C	cSt	ASTM D445	15.4	14.0	14.3	13.8

GRAPHS

Certificate 12367

Laboratory Sample No.

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 : GFL0113950 Lab Number : 06152766 Unique Number : 10982844

Test Package : FLEET

Received : 18 Apr 2024 **Tested** Diagnosed

: 18 Apr 2024 : 18 Apr 2024 - Wes Davis

GFL Environmental - 932 - Muskego HC W144 S6400 College Ct.

Muskego, WI US 53150 Contact: Brian Schlomann

brian.schlomann@gflenv.com T: (262)510-4586

To discuss this sample report, contact Customer Service at 1-800-237-1369.

 st - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)