

OIL ANALYSIS REPORT

(14250Z) Walgreens - Tractor [Walgreens - Tractor] 136A61443

Diesel Engine

PETRO CANADA DURON SHP 10W30 (11 GAL)

DIAGNOSIS

Recommendation

Resample at the next service interval to monitor.

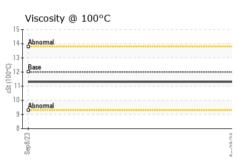
All component wear rates are normal.

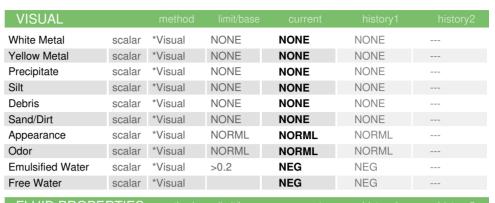
Contamination

There is no indication of any contamination in the

Fluid Condition

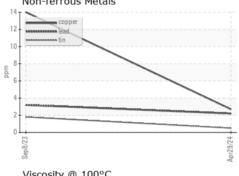
The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

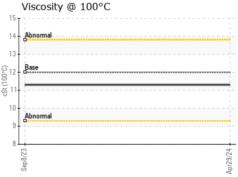

GAL)			Sep2023	Apr2024		
SAMPLE INFOR	RMATION	method	limit/base	current	history1	history2
Sample Number		Client Info		PCA0107546	PCA0094386	
Sample Date		Client Info		29 Apr 2024	08 Sep 2023	
Machine Age	mls	Client Info		217132	192109	
Oil Age	mls	Client Info		217132	192109	
Oil Changed		Client Info		Changed	Changed	
Sample Status				NORMAL	NORMAL	
CONTAMINAT	ΓΙΟΝ	method	limit/base	current	history1	history2
Fuel		WC Method	>2.0	<1.0	<1.0	
Water		WC Method	>0.2	NEG	NEG	
Glycol		WC Method		NEG	NEG	
WEAR METAL	_S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>100	17	18	
Chromium	ppm	ASTM D5185m	>20	<1	2	
Nickel	ppm	ASTM D5185m	>4	0	1	
Titanium	ppm	ASTM D5185m		0	<1	
Silver	ppm	ASTM D5185m	>3	0	0	
Aluminum	ppm	ASTM D5185m	>20	3	4	
Lead	ppm	ASTM D5185m	>40	2	3	
Copper	ppm	ASTM D5185m	>330	3	14	
Tin	ppm	ASTM D5185m	>15	<1	2	
Vanadium	ppm	ASTM D5185m		0	<1	
Cadmium	ppm	ASTM D5185m		0	<1	
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm		2	2	4	
Barium	ppm	ASTM D5185m		0	0	
Molybdenum	ppm	ASTM D5185m	50	57	56	
Manganese	ppm	ASTM D5185m		<1	<1	
Magnesium	ppm	ASTM D5185m	950	905	893	
Calcium	ppm	ASTM D5185m	1050	1057	1116	
Phosphorus	ppm	ASTM D5185m	995	1010	941	
Zinc Sulfur	ppm	ASTM D5185m ASTM D5185m	1180 2600	1183 3201	1198 3176	
CONTAMINAN		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	4	5	
Sodium	ppm	ASTM D5185m		2	3	
Potassium	ppm	ASTM D5185m	>20	4	12	
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>3	0.8	0.6	
Nitration	Abs/cm	*ASTM D7624	>20	9.5	9.8	
Sulfation	Abs/.1mm	*ASTM D7415	>30	20.6	20.9	
FLUID DEGRA	DATION	method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	15.9	16.1	
Base Number (BN)	mg KOH/g	ASTM D2896		7.3	6.5	

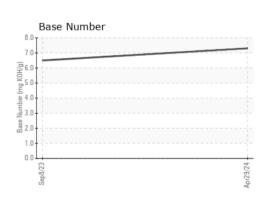


OIL ANALYSIS REPORT

Base Number		
7.0	_	
E 5.0		
8 ac Numb et (mg K0H/0) 6 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		
N 20 2.0		H
1.0		
Sep8/23	A C. OC. A	Barre de la constante de la co






FLUID PROPI	ERTIES	method			history1	history2
Visc @ 100°C	cSt	ASTM D445	12.00	11.3	11.3	

GRAPHS

Certificate 12367

Laboratory Sample No.

: PCA0107546 Lab Number : 06175264 Unique Number : 11021317 Test Package : FLEET

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received **Tested**

: 10 May 2024 : 13 May 2024 Diagnosed

: 13 May 2024 - Wes Davis

Transervice - Shop 1367 - Berkeley-Jupiter

15998 Walgreens Drive Jupiter, FL US 33478

Contact: Manny Gonzalez egonzalez@transervice.com T: (561)776-0755

To discuss this sample report, contact Customer Service at 1-800-237-1369. * - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012) F: (561)776-0799