

OIL ANALYSIS REPORT

Machine Id 913010 **Diesel Engine**

PETRO CANADA DURON SHP 15W40 (--- GAL)

DIAGNOSIS

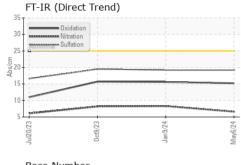
Recommendation

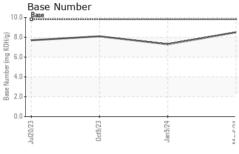
Resample at the next service interval to monitor.

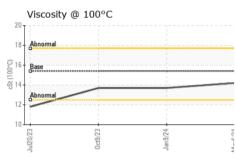
All component wear rates are normal.

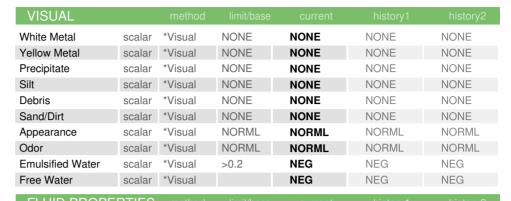
Contamination

There is no indication of any contamination in the

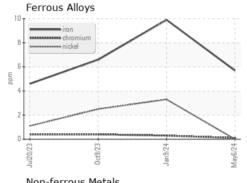

Fluid Condition

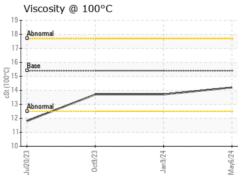

The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

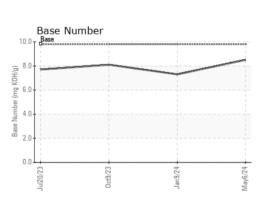

1 3HF 15W40 (-	GAL)					
SAMPLE INFOR	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		GFL0120573	GFL0108525	GFL006603
Sample Date		Client Info		06 May 2024	09 Jan 2024	09 Oct 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
CONTAMINAT	TION	method	limit/base	current	history1	history2
Fuel		WC Method	>3.0	<1.0	<1.0	<1.0
Water		WC Method	>0.2	NEG	NEG	NEG
Glycol		WC Method		NEG	NEG	NEG
WEAR METAL	_S	method	limit/base	current	history1	history2
ron	ppm	ASTM D5185m	>120	6	10	7
Chromium	ppm	ASTM D5185m	>20	<1	<1	<1
Nickel	ppm	ASTM D5185m	>5	0	3	2
Titanium	ppm	ASTM D5185m	>2	0	0	0
Silver	ppm	ASTM D5185m	>2	0	<1	<1
Aluminum	ppm	ASTM D5185m	>20	<1	1	1
Lead	ppm	ASTM D5185m	>40	0	<1	0
Copper	ppm	ASTM D5185m	>330	<1	2	4
Tin	ppm	ASTM D5185m	>15	0	2	1
Vanadium	ppm	ASTM D5185m		0	0	0
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	0	4	5
Barium	ppm	ASTM D5185m	0	0	0	0
Molybdenum	ppm	ASTM D5185m	60	61	58	59
Manganese	ppm	ASTM D5185m	0	0	<1	<1
Magnesium	ppm	ASTM D5185m	1010	1027	956	903
Calcium	ppm	ASTM D5185m	1070	1131	1088	1156
Phosphorus	ppm	ASTM D5185m	1150	1064	1098	1010
Zinc	ppm	ASTM D5185m	1270	1245	1279	1240
Sulfur	ppm	ASTM D5185m	2060	3615	3041	2941
CONTAMINAN	NTS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	6	4	4
Sodium	ppm	ASTM D5185m		3	3	4
Potassium	ppm	ASTM D5185m	>20	0	1	1
INFRA-RED		method	limit/base	current	history1	history2
	%	*ASTM D7844	>4	0.3	0.5	0.6
Soot %	/0					
Soot % Nitration	Abs/cm	*ASTM D7624	>20	6.6	8.3	8.2
			>20 >30	6.6 19.2	8.3 19.2	8.2 19.5
Vitration	Abs/cm Abs/.1mm	*ASTM D7624 *ASTM D7415				19.5
Nitration Sulfation	Abs/cm Abs/.1mm	*ASTM D7624 *ASTM D7415	>30	19.2	19.2	



OIL ANALYSIS REPORT






FLUID PROP	EHILO	method			riistory i	HISTORYZ
Visc @ 100°C	cSt	ASTM D445	15.4	14.2	13.7	13.7

GRAPHS

10	Non-rerrous Metals
8	**************************************
mdd 6	
4	
2	Annual Control of the
	Jul20/23 0 ct9/23 Jan9/24

Certificate 12367

Laboratory Sample No. : GFL0120573 Lab Number : 06178346

Unique Number : 11029672

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received

: 14 May 2024 **Tested** : 14 May 2024

Diagnosed : 14 May 2024 - Wes Davis

GFL Environmental - 904 - Chippewa Falls HC

11888 & 11863 30th Avenue Chippewa Falls, WI US 54729

Contact: Andy Kane

Test Package : FLEET To discuss this sample report, contact Customer Service at 1-800-237-1369.

* - Denotes test methods that are outside of the ISO 17025 scope of accreditation. Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012) T: (715)202-3420

Contact/Location: See also GFL904, A, B, C, 927, 938) - Andy Kane - GFL904