

OIL ANALYSIS REPORT

Sample Rating Trend

Machine Id 727065-361316.1

Diesel Engine Fluid

PETRO CANADA DURON SHP 15W40

6.1						
ON SHP 15W40 (8		Jul2021 Mar2		Jan2024 Feb2024 Mar2024	May2024	
SAMPLE INFORM	ATION	method	limit/base	current	history1	history2
Sample Number		Client Info		GFL0112256	GFL0112200	GFL0112206
Sample Date		Client Info		31 May 2024	10 May 2024	19 Apr 2024
Machine Age	hrs	Client Info		1512	1369	1235
Oil Age	hrs	Client Info		150	150	150
Oil Changed		Client Info		Not Changd	Not Changd	Not Changd
Sample Statue						

DEGRADATION

Sample Status				ABNORMAL	NORMAL	NORMAL
CONTAMINAT	ION	method	limit/base	current	history1	history2
Water		WC Method	>0.2	NEG	NEG	NEG
Glycol		WC Method		NEG	NEG	NEG
WEAR METAL	S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>120	13	9	5
Chromium	ppm	ASTM D5185m	>20	<1	<1	<1
Nickel	ppm	ASTM D5185m	>5	0	<1	<1
Titanium	ppm	ASTM D5185m	>2	0	<1	<1
Silver	ppm	ASTM D5185m	>2	0	0	<1
Aluminum	ppm	ASTM D5185m	>20	2	2	3
Lead	ppm	ASTM D5185m	>40	<1	1	1
Copper	ppm	ASTM D5185m	>330	6	3	3
Tin	ppm	ASTM D5185m	>15	0	<1	1
Vanadium	ppm	ASTM D5185m		0	<1	<1
Cadmium	ppm	ASTM D5185m		0	<1	<1

ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	0	0	0
Barium	ppm	ASTM D5185m	0	0	0	0
Molybdenum	ppm	ASTM D5185m	60	53	53	55
Manganese	ppm	ASTM D5185m	0	<1	0	<1
Magnesium	ppm	ASTM D5185m	1010	866	833	799
Calcium	ppm	ASTM D5185m	1070	1022	969	942
Phosphorus	ppm	ASTM D5185m	1150	976	992	833
Zinc	ppm	ASTM D5185m	1270	1150	1156	1060
Sulfur	ppm	ASTM D5185m	2060	3178	3073	2792
CONTAMINAN	TS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	0	3	3

Silicon	ppm	ASTM D5185m	>25	0	3	3
Sodium	ppm	ASTM D5185m		2	2	0
Potassium	ppm	ASTM D5185m	>20	3	4	3
Fuel	%	ASTM D3524	>3.0	<1.0	<1.0	<1.0
INFRA-RED		method	limit/base	current	history1	history2
					-	

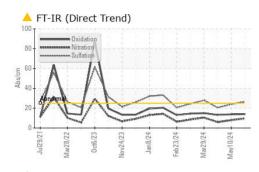
Soot %	%	*ASTM D7844	>4	4 .9	3.5	2
Nitration	Abs/cm	*ASTM D7624	>20	9.6	7.9	5.9
Sulfation	Abs/.1mm	*ASTM D7415	>30	26.4	24.0	20.5
FLUID DEGRA	DATION	method	limit/base	current	history1	history2
FLUID DEGRAE		method *ASTM D7414		current 14.0	history1 13.8	history2 13.1

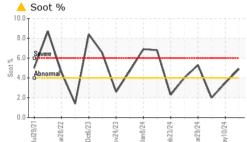
DIAGNOSIS Recommendation

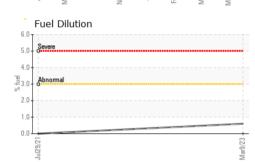
We advise that you check for faulty combustion, plugged air filters, or aftercoolers. We recommend you service the filters on this component. Resample at the next service interval to monitor. NOTE: High solids (carbon/soot) in the sample have limited the accuracy of Infra-Red data including Total Base Number (TBN) value.

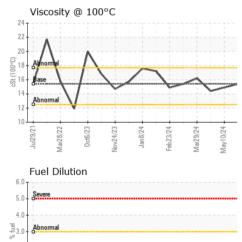
Wear

All component wear rates are normal.

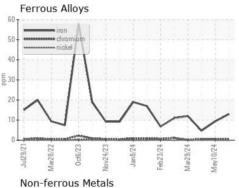

Contamination

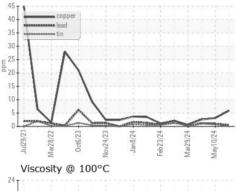

There is an abnormal amount of solids and carbon present in the oil.

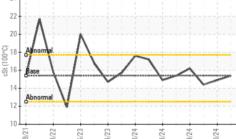

Fluid Condition The BN level is low.

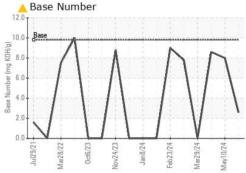


OIL ANALYSIS REPORT








VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.2	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPE		method	limit/base	current	history1	history2
	n IIES	methou	IIIIII/Dase	current	Thistory I	TIISTOLAS
Visc @ 100°C	cSt	ASTM D445	15.4	15.4	14.9	14.4

GRAPHS

2.0

1.0

0.0

lan8/24 May10/24 Mar28/22 0ct6/23 Vov24/23 eh23/74 Mar29/24 Laboratory : WearCheck USA - 501 Madison Ave., Cary, NC 27513 GFL Environmental - 829 - Wilco Hauling Sample No. : GFL0112256 Received : 04 Jun 2024 5054 Highway HH Lab Number : 06198777 Tested : 05 Jun 2024 Hartville, MO Unique Number : 11060900 Diagnosed : 05 Jun 2024 - Jonathan Hester US 65667 Test Package : FLEET (Additional Tests: FuelDilution) Contact: James Jones Certificate 12367 To discuss this sample report, contact Customer Service at 1-800-237-1369. james.jones@gflenv.com * - Denotes test methods that are outside of the ISO 17025 scope of accreditation. T: (417)349-5006 Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012) E:

Report Id: GFL829 [WUSCAR] 06198777 (Generated: 06/06/2024 07:35:12) Rev: 1

Submitted By: Jerry Hazel Page 2 of 2