
OIL ANALYSIS REPORT

(41001HA) 426025-4670

Diesel Engine

PETRO CANADA DURON SHP 15W40 (--- LTR)

DIAGNOSIS

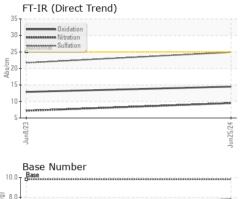
Recommendation

Resample at the next service interval to monitor.

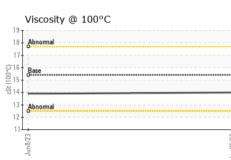
All component wear rates are normal.

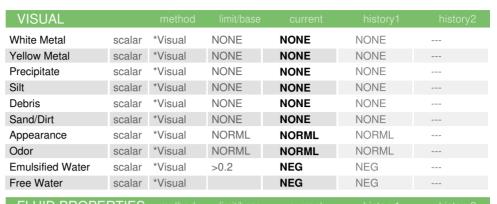
Contamination

There is no indication of any contamination in the

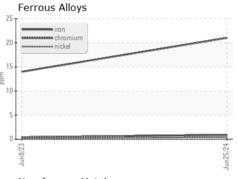

Fluid Condition

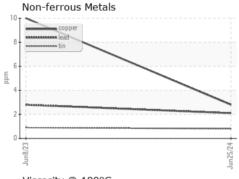
The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

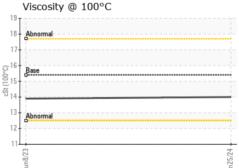

N SHP 15W4U (-	,					
SAMPLE INFOR	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		GFL0122011	GFL0067855	
Sample Date		Client Info		25 Jun 2024	08 Jun 2023	
Machine Age	hrs	Client Info		34069	33118	
Oil Age	hrs	Client Info		34069	0	
Oil Changed		Client Info		Changed	Not Changd	
Sample Status				NORMAL	NORMAL	
CONTAMINAT	TION	method	limit/base	current	history1	history2
Fuel		WC Method	>3.0	<1.0	<1.0	
Water		WC Method	>0.2	NEG	NEG	
Glycol		WC Method		NEG	NEG	
WEAR METAL	_S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>120	21	14	
Chromium	ppm	ASTM D5185m	>20	<1	<1	
Nickel	ppm	ASTM D5185m	>5	<1	<1	
Titanium	ppm	ASTM D5185m	>2	<1	0	
Silver	ppm	ASTM D5185m	>2	0	0	
Aluminum	ppm	ASTM D5185m	>20	4	0	
Lead	ppm	ASTM D5185m	>40	2	3	
Copper	ppm	ASTM D5185m	>330	3	10	
Tin	ppm	ASTM D5185m	>15	<1	<1	
Vanadium	ppm	ASTM D5185m		<1	0	
Cadmium	ppm	ASTM D5185m		0	0	
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	0	5	27	
Barium	ppm	ASTM D5185m	0	0	2	
Molybdenum	ppm	ASTM D5185m	60	57	44	
Manganese	ppm	ASTM D5185m	0	<1	<1	
Magnesium	ppm	ASTM D5185m	1010	931	583	
Calcium	ppm	ASTM D5185m	1070	1125	780	
Phosphorus	ppm	ASTM D5185m	1150	1042	930	
Zinc	ppm	ASTM D5185m	1270	1272	842	
Sulfur	ppm	ASTM D5185m	2060	3269	4633	
CONTAMINAN	NTS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>25	4	2	
Sodium	ppm	ASTM D5185m		5	0	
Potassium	ppm	ASTM D5185m	>20	5	1	
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844	>4	3.4	2.6	
Nitration	Abs/cm	*ASTM D7624	>20	9.5	7.2	
Sulfation	Abs/.1mm	*ASTM D7415	>30	24.9	21.7	
FLUID DEGRA	DATION	method	limit/base	current	history1	history2
Oxidation	Abs/.1mm	*ASTM D7414	>25	14.5	12.9	

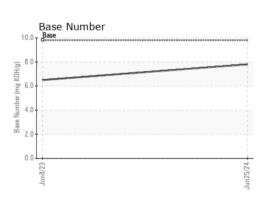


OIL ANALYSIS REPORT


10.0	
<u> </u> 8.0 -	
(0) 8.00 for the part of the p	
4.0	
2.0	
0.0	
Jun8/23	5
7	_
Viscosity @ 100°C	






FLUID PROPE	RHES	method	limit/base		history1	history2
Visc @ 100°C	cSt	ASTM D445	15.4	14.0	13.9	

GRAPHS

Certificate 12367

Laboratory Sample No. Lab Number : 06222171

: GFL0122011 Unique Number : 11100368 Test Package : FLEET

: WearCheck USA - 501 Madison Ave., Cary, NC 27513 Received : 27 Jun 2024

Tested : 28 Jun 2024 Diagnosed : 28 Jun 2024 - Wes Davis

GFL Environmental - 654S - Midlothian

12230 Deergrove Road Midlothian, VA

US 23112 Contact: Corbin Umphlet cumphlet@gflenv.com

To discuss this sample report, contact Customer Service at 1-800-237-1369. * - Denotes test methods that are outside of the ISO 17025 scope of accreditation.

Statements of conformity to specifications are based on the simple acceptance decision rule (JCGM 106:2012)

T:

F: