

OIL ANALYSIS REPORT

Sample Rating Trend

.........

NORMAL

Machine Id

949004-205305

Component Natural Gas Engine

Fluid PETRO CANADA DURON GEO LD 15W40 (28 GAL)

DIAGNOSIS

Recommendation

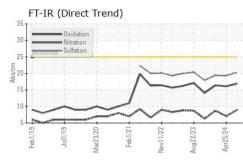
Resample at the next service interval to monitor.

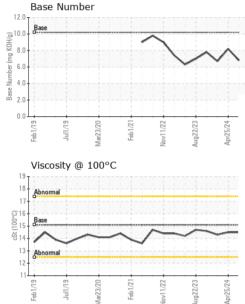
Wear

All component wear rates are normal.

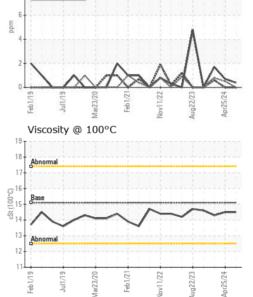
Contamination

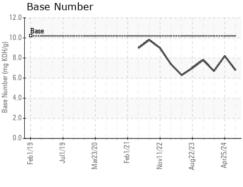
There is no indication of any contamination in the oil.

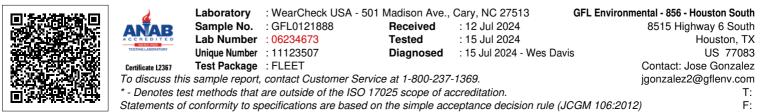

Fluid Condition


The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.

SAMPLE INFORI	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		GFL0121888	GFL0106885	GFL0106749
Sample Date		Client Info		09 Jul 2024	25 Apr 2024	16 Apr 2024
Machine Age	hrs	Client Info		4481	3890	3787
Oil Age	hrs	Client Info		600	3787	3787
Oil Changed		Client Info		Changed	Changed	Changed
Sample Status				NORMAL	NORMAL	NORMAL
CONTAMINAT	ION	method	limit/base	current	history1	history2
Water		WC Method	>0.1	NEG	NEG	NEG
WEAR METAL	S	method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185m	>50	6	2	5
Chromium	ppm	ASTM D5185m	>4	<1	0	<1
Nickel	ppm	ASTM D5185m	>2	0	0	0
Titanium	ppm	ASTM D5185m		<1	0	0
Silver	ppm	ASTM D5185m	>3	0	0	0
Aluminum	ppm	ASTM D5185m	>9	2	1	1
Lead	ppm	ASTM D5185m	>30	0	0	<1
Copper	ppm	ASTM D5185m	>35	<1	<1	2
Tin	ppm	ASTM D5185m	>4	0	<1	<1
Vanadium	ppm	ASTM D5185m		<1	0	<1
Cadmium	ppm	ASTM D5185m		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185m	50	18	37	20
Barium	ppm	ASTM D5185m	5	0	0	0
Molybdenum	ppm	ASTM D5185m	50	53	46	52
Manganese	ppm	ASTM D5185m	0	0	<1	<1
Magnesium	ppm	ASTM D5185m	560	553	544	594
Calcium	ppm	ASTM D5185m	1510	1623	1494	1607
Phosphorus	ppm	ASTM D5185m	780	797	726	811
Zinc	ppm	ASTM D5185m	870	943	855	931
Sulfur	ppm	ASTM D5185m	2040	2238	2578	2827
CONTAMINAN	TS	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185m	>+100	4	3	4
Sodium	ppm	ASTM D5185m		5	2	4
Potassium	ppm	ASTM D5185m	>20	2	0	0
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	*ASTM D7844		0	0	0
		*ASTM D7624	>20	8.9	7.1	8.7
Nitration	Abs/cm	AUTIVI DTULT				
Nitration Sulfation	Abs/cm Abs/.1mm	*ASTM D7415	>30	20.3	19.3	19.4
	Abs/.1mm	*ASTM D7415	>30 limit/base	20.3 current	19.3 history1	19.4 history2
Sulfation	Abs/.1mm	*ASTM D7415				
Sulfation FLUID DEGRAD	Abs/.1mm	*ASTM D7415 method	limit/base	current	history1	history2




OIL ANALYSIS REPORT



VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Yellow Metal	scalar	*Visual	NONE	NONE	NONE	NONE
Precipitate	scalar	*Visual	NONE	NONE	NONE	NONE
Silt	scalar	*Visual	NONE	NONE	NONE	NONE
Debris	scalar	*Visual	NONE	NONE	NONE	NONE
Sand/Dirt	scalar	*Visual	NONE	NONE	NONE	NONE
Appearance	scalar	*Visual	NORML	NORML	NORML	NORML
Odor	scalar	*Visual	NORML	NORML	NORML	NORML
Emulsified Water	scalar	*Visual	>0.1	NEG	NEG	NEG
Free Water	scalar	*Visual		NEG	NEG	NEG
FLUID PROPE	RTIES	method	limit/base	current	history1	history2
Visc @ 100°C	cSt	ASTM D445	15.1	14.5	14.5	14.3
GRAPHS						
Ferrous Alloys	1					
)	Λ					
D	-					
	1.1.1.1.1.		1.1.			
0-						
	h		¥			
0-	Feb 1/21	Nov11/22 Aug22/23	Apr25/24			
Non-ferrous Meta		MoV11/22 - Aug22/23	Apr25/24			
Feb1/19 Jul1/19 Mar23/20		Nov11/22 A	Apr25/24			

Submitted By: Apolinar Zacarias Page 2 of 2