

OIL ANALYSIS REPORT

Sample Rating Trend

FUEL

Machine Id **GRH GG LUBE** Component

Hydraulic System MOBIL JET OIL II (--- GAL)

DIAGNOSIS

Recommendation

We advise that you check all areas where contaminants can enter the system. We recommend that you drain the oil from the component if this has not already been done. We recommend an early resample to monitor this condition. NOTE: Please provide information regarding reservoir capacity, filter type and micron rating with next sample. (Customer Sample Comment: Check for fuel contamination please)

Wear

All component wear rates are normal.

Contamination

Light fuel dilution occurring.

Fluid Condition

Viscosity of sample indicates oil is within ISO 22 range, advise investigate. The AN level is acceptable for this fluid. The oil is no longer serviceable due to the presence of contaminants.

			Jun2009	Feb2022		
SAMPLE INFORM	ATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0445193	PC293298	
Sample Date		Client Info		17 Feb 2022	29 Jun 2009	
Machine Age	hrs	Client Info		0	0	
Oil Age	hrs	Client Info		0	0	
Oil Changed		Client Info		N/A	N/A	
Sample Status				ABNORMAL	NORMAL	
CONTAMINATION	N	method	limit/base	current	history1	history2
Water		WC Method	>.1	NEG	NEG	
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185(m)	>20	1	<1	
Chromium	ppm	ASTM D5185(m)	>20	0	<1	
Nickel	ppm	ASTM D5185(m)	>20	0	0	
Titanium	ppm	ASTM D5185(m)		0	0	
Silver	ppm	ASTM D5185(m)		0	<1	
Aluminum	ppm	ASTM D5185(m)	>20	0	<1	
Lead	ppm	ASTM D5185(m)	>20	<1	<1	
Copper	ppm	ASTM D5185(m)	>20	<1	<1	
Tin	ppm	ASTM D5185(m)	>20	0	<1	
Antimony	ppm	ASTM D5185(m)		<1		
Vanadium	ppm	ASTM D5185(m)		0	0	
Beryllium	ppm	ASTM D5185(m)		0		
Cadmium	ppm	ASTM D5185(m)		0		
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185(m)		<1	3	
Barium	ppm	ASTM D5185(m)		0	0	
Molybdenum	ppm	ASTM D5185(m)		0	<1	
Manganese	ppm	ASTM D5185(m)		0	0	
Magnesium	ppm	ASTM D5185(m)		0	<1	
Calcium	ppm	ASTM D5185(m)		<1	<1	
Phosphorus	ppm	ASTM D5185(m)		2831	2555	
Zinc	ppm	ASTM D5185(m)		<1	<1	
Sulfur	ppm	ASTM D5185(m)		4	92	
Lithium	ppm	ASTM D5185(m)		0		
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185(m)	>15	<1	<1	
Sodium	ppm	ASTM D5185(m)		0	0	
Potassium	ppm	ASTM D5185(m)	>20	<1	2	
Fuel	%	ASTM D7593*		A 3.2		

OIL ANALYSIS REPORT

limit/base

>5000

>160

>10

0.03

NONE

NONE

NONE

NONE

NONE

NONE

NORML

NORML

limit/base

limit/base

>.1

27.6

>19/17/14

limit/base

limit/base

>3

current

1448

117

7

3

1

1

18/14/10

0.08

NONE

NONE

NONE

NONE

NONE

NONE

NORML

NORML

current

current

NEG

NEG

22.8

current

current

method

ASTM D7647

ASTM D7647

ASTM D7647

ASTM D7647

ISO 4406 (c)

method

ASTM D974*

method

Visual*

Visual*

Visual*

Visual*

Visual*

Visual*

Visual*

Visual*

Visual*

method

ASTM D7279(m)

method

scalar Visual*

mg KOH/g

scalar

scalar

scalar

scalar

scalar

scalar

scalar

scalar

scalar

cSt

ASTM D7647 >1300

ASTM D7647 >40

history1

4943

986

80

14

2

0

19/17/13

history1

history1

0.07

VLITE

NONE

NONE

NONE

VLITE

NONE

NORML

NORML

history1

history1

NEG

NEG

25.6

history2

history2

history2

history2

history2

no image

no image

FLUID CLEANLINESS

FLUID DEGRADATION

Particles >4µm

Particles >6um

Particles >14µm

Particles >21µm

Particles >38µm

Particles >71µm

Oil Cleanliness

Acid Number (AN)

VISUAL

White Metal

Yellow Metal

Precipitate

Silt

Debris

Odor

Sand/Dirt

Appearance

Free Water

Visc @ 40°C

Emulsified Water

FLUID PROPERTIES

SAMPLE IMAGES

^{4μ} ^{6μ} Acid Number	14μ 21μ	38µ 71µ	Color			
(9,2,50 - Severe (9,2,50 - Abnormal 1,50 - Bin (1,2,2)			Bottom			C
N por 0.00 Base 0.00 B062unp		Feb 17/22				
Particle Trend		2				
	CALLA ISO 17025:2017 Accredited Laboratory To discuss this Test denoted (Laboratory Sample No. Lab Number Unique Number Test Package s sample report, c (*) outside scope	: WearCheck - C8-11 : WC0445193 : 02481119 : 5382056 : IND 2 (Additional T ontact Customer Serv of accreditation, (m) m	75 Appleby Line Recieved Diagnosed Diagnostician Tests: FuelDilution rice at 1-800-268 method modified,	, Burlington, ON : 04 Apr 2022 : 06 Apr 2022 : Kevin Marson n, PercentFuel) -2131. (e) tested at exte	L7L 5H9 ernal lab.

e at 1-800-268-2131. Test denoted (*) outside scope of accreditation, (m) method modified, (e) tested at external lab. Validity of results and interpretation are based on the sample and information as supplied.

NEWFOUNDLAND POWER INC.

50 DUFFY PLACE, PO BOX 8910 ST. JOHNS, NL CA A1B 3P6 Contact: Shane Reid sreid@newfoundlandpower.com T: (709)737-5209 F: (709)737-2926