
PROBLEM SUMMARY

Area Wide Cold Mill/Reduction Mill 80" MILL ROLL BENDING HYD (WCM031) (S/N 1000005879) Component

Hydraulic System

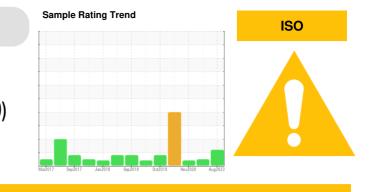
AW HYDRAULIC OIL ISO 46 (200 GAL)

COMPONENT CONDITION SUMMARY

RECOMMENDATION

We recommend you service the filters on this component. Resample at the next service interval to monitor. Please specify the brand, type, and viscosity of the oil on your next sample.

PROBLEMATIC TEST RESULTS								
Sample Status			ATTENTION	NORMAL	ATTENTION			
Particles >4µm	ASTM D7647	>5000	<u> </u>		6 178			
Particles >6µm	ASTM D7647	>1300	🔺 1384		395			
Oil Cleanliness	ISO 4406 (c)	>19/17/15	<u> </u>		2 0/16/11			


Customer Id: ALGSSM Sample No.: WC0752305 Lab Number: 02577733 Test Package: IND 2

To manage this report scan the QR code

To discuss the diagnosis or test data: Wes Davis +1 905-569-8600 x223 wesd@wearcheck.ca

To change component or sample information: Gloria Gonzalez +1 (289)291-4643 x4643 gloria.gonzalez@wearcheck.com

RECOMMENDED A	CTIONS			
Action	Status	Date	Done By	Description
Change Filter			?	We recommend you service the filters on this component.
Information Required			?	Please specify the brand, type, and viscosity of the oil on your next sample.

HISTORICAL DIAGNOSIS

12 Nov 2020 Diag: Wes Davis

Resample at the next service interval to monitor. Please contact your representative for information regarding the proper sampling kits for your service. NOTE: We recommend using MOB 2 test kits, this testkit includes Particle Count to determine the ISO cleanliness of the fluid.All component wear rates are normal. There is no indication of any contamination in the component(unconfirmed). The condition of the oil is acceptable for the time in service.

view report

12 Nov 2020 Diag: Wes Davis

We recommend you service the filters on this component. Resample at the next service interval to monitor. Please specify the brand, type, and viscosity of the oil on your next sample.All component wear rates are normal. There is a light amount of silt (particulates < 14 microns in size) present in the oil. The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

08 May 2020 Diag: Kevin Marson

We advise that you check all areas where contaminants can enter the system. We advise that you perform a filter service, and use offline filtration to improve the cleanliness of the system fluid. The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather. Resample in 30-45 days to monitor this situation. Please specify the brand, type, and viscosity of the oil on your next sample. We suspect that the abnormal contaminant(s) is the result of incorrect sampling technique. DISCLAIMER: Interpretation of laboratory tests is based on sample, as received from client. Source of sample and sampling technique cannot be verified.All component wear rates are normal. Particles >6µm are severely high. Particles >4µm are severely high. Particles >14µm are abnormally high. Particles >21µm are abnormally high. Moderate concentration of visible dirt/debris present in the oil. The system cleanliness code is much higher than the acceptable limit for the target ISO 4406 cleanliness code. The AN level is acceptable for this fluid. The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.

OIL ANALYSIS REPORT

Area Wide Cold Mill/Reduction Mill Machine Id 80" MILL ROLL BENDING HYD (WCM031) (S/N 1000005879 Component

Hydraulic System

AW HYDRAULIC OIL ISO 46 (200 GAL)

DIAGNOSIS

Recommendation

We recommend you service the filters on this component. Resample at the next service interval to monitor. Please specify the brand, type, and viscosity of the oil on your next sample.

Wear

All component wear rates are normal.

Contamination

There is a light amount of silt (particulates < 14 microns in size) present in the oil.

Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

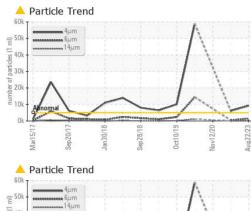
1) (S/N 10000	05879)					
	000107					
SAMPLE INFOR		method	Sep2017 Jan2018	Sep2018 Oct2019 Nov2020 Current	Aug2023 history1	history2
			mmubase			
ample Number		Client Info		WC0752305	WC0434878	WC0494871
Sample Date	bro	Client Info		22 Aug 2023	12 Nov 2020	12 Nov 2020
Machine Age	hrs	Client Info Client Info		0	0	0
Dil Age	hrs	Client Info		U N/A	0 N/A	0 N/A
Dil Changed Sample Status		Client Inio		ATTENTION	NORMAL	ATTENTION
				ATTENTION	NORIVIAL	ATTENTION
WEAR METALS		method	limit/base	current	history1	history2
ron	ppm	ASTM D5185(m)	>20	<1	2	<1
Chromium	ppm	ASTM D5185(m)	>20	0	<1	0
lickel	ppm	ASTM D5185(m)	>20	<1	0	0
Titanium	ppm	ASTM D5185(m)		0	0	0
Silver	ppm	ASTM D5185(m)		0	<1	<1
Aluminum	ppm	ASTM D5185(m)	>20	<1	<1	<1
ead	ppm	ASTM D5185(m)	>20	0	<1	<1
Copper	ppm	ASTM D5185(m)	>20	<1	2	<1
īn	ppm	ASTM D5185(m)	>20	0	<1	0
Antimony	ppm	ASTM D5185(m)		0	0	<1
/anadium	ppm	ASTM D5185(m)		0	0	0
Beryllium	ppm	ASTM D5185(m)		0	0	0
Cadmium	ppm	ASTM D5185(m)		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185(m)	5	0	<1	<1
Barium	ppm	ASTM D5185(m)	5	0	0	0
/lolybdenum	ppm	ASTM D5185(m)	5	0	0	0
Manganese	ppm	ASTM D5185(m)		0	0	0
Magnesium	ppm	ASTM D5185(m)	25	<1	<1	<1
Calcium	ppm	ASTM D5185(m)	200	57	30	39
Phosphorus	ppm	ASTM D5185(m)	300	254	279	272
linc	ppm	ASTM D5185(m)	370	287	338	340
Sulfur	ppm	ASTM D5185(m)	2500	712	702	694
₋ithium	ppm	ASTM D5185(m)		<1	<1	<1
CONTAMINANT	S	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185(m)	>15	0	<1	<1
Sodium	ppm	ASTM D5185(m)		0	0	0
Potassium	ppm	ASTM D5185(m)	>20	<1	<1	<1
FLUID CLEANLI	NESS	method	limit/base	current	history1	history2
Particles >4µm		ASTM D7647	>5000	A 9198		6 178
· Particles >6μm		ASTM D7647	>1300	<u> </u>		395
Particles >14µm		ASTM D7647	>320	57		11
Particles >21µm		ASTM D7647	>80	16		3
Particles >38µm		ASTM D7647	>20	1		0
Particles >71µm		ASTM D7647	>4	1		0
Dil Cleanliness		ISO 4406 (c)	>19/17/15	A 20/18/13		▲ 20/16/11
FLUID DEGRAD	ATION	method	limit/base	current	history1	history2
	mg KOH/g	ASTM D974*	0.57	0.29		0.36
Acid Number (AN)						

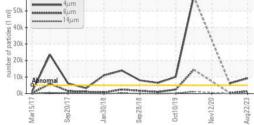
Sample Rating Trend

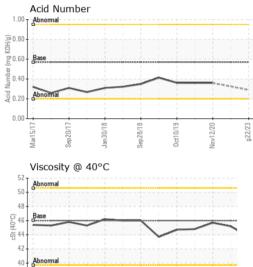
ISO

Report Id: ALGSSM [WCAMIS] 02577733 (Generated: 08/24/2023 08:53:03) Rev: 1

Contact/Location: Maintenance Technology - Algoma Reliability - ALGSSM


OIL ANALYSIS REPORT


method


limit/base

current

VISUAL

38

Mar15/17

Sep20/17

Jan 30/18

	A	White Matel	acalar	Vieuel*	NONE	NONE	NONE	NONE
		White Metal Yellow Metal	scalar scalar	Visual* Visual*	NONE	NONE	NONE	NONE
	I	Precipitate	scalar	Visual*	NONE	NONE	NONE	NONE
	$I = \Lambda$	Silt	scalar	Visual*	NONE	NONE	NONE	NONE
~	1 A N	Debris	scalar	Visual*	NONE	NONE	NONE	NONE
~	1.1	Sand/Dirt	scalar	Visual*	NONE	NONE	NONE	NONE
18			scalar	Visual*	NORML	NORML	NORML	NORML
Sep28/18	Uct10/13	Odor	scalar	Visual*	NORML	NORML	NORML	NORML
		Emulsified Water	scalar	Visual*	>0.05	NEG	NEG	NEG
		Free Water	scalar	Visual*	>0.05	NEG	NEG	NEG
	$ \rangle$	FLUID PROPER		method	limit/base	current	history1	history2
	$ \rangle$	Visc @ 40°C	cSt	ASTM D7279(m)	46	43.7	45.2	45.7
\sim	LAN	SAMPLE IMAGE	S	method	limit/base	current	history1	history2
Sep 28/18	Uct10/19 Nov12/20	Color						
		Bottom						
	T dat dat dat has been been been	PrtFilter				no image	no image	no image
Sep28/18	Uct10/19 - Nov12/20 -	GRAPHS						
Sel	Nor	Ferrous Alloys			491,52	Particle Count	t	т26
~~		UUSTREW Non-ferrous Meta	Sep28/18	Oct10/19 Nov12/20	122,881 30,724 (m 1 - 1 - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 -	Severe Patagormal	-	-24 -22 -20 2 -18 5 -16 6 -16 6 -16 6 -14 19 -14 19 -14 -14 19 -14 19 -14 -14 19 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14
Sep28/18	Ucti U/19 +	E 5 Copper lead	/18	61/	Jo 121			-14 -12 -10 -8
		Mar15/17 Sep20/17 Jan30/18	Sep28/18	0ct10/19 Nov12/20	ng22			6
		Viscosity @ 40°C				Acid Number	14μ 21μ	38µ 71µ́
		55 Abnormal			10.0 Mumber (mg K0H/g)	Abnormal		
		다 50 - Base - 45 - Abnormal			(mg K	Base		
		• 45 - Abnormal	\sim		ਤ 0.50 ਦ	Abnormal		
		35			N Di U	Abnemal		
			8/18 -	Oct1 0/19 -	2/23	5/17	Jan30/18 - Sep28/18 - Oct10/19 -	2/20
		Mar15/17 Sep20/17 Jan30/18	Sep 28/18	0ct10/19 Nov12/20	Aug22/23 Av	Mar15/17 Sep20/17	Jan30/18 Sep28/18 Oct10/19	Nov12/20 Aug22/23
	Laboratory Sample No. Lab Number	: WearCheck - C8-1 : WC0752305 : 02577733	175 Apple Received Diagnos	d : 23 /	lington, ON L Aug 2023 Aug 2023	.7L 5H9 ALGON	301 WALLA	STORES DEPT ACE TERRACE TE MARIE, ON

Contact/Location: Maintenance Technology - Algoma Reliability - ALGSSM

history2

history1