

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id

PORT SSG (S/N PE6068H806408)

Port Diesel Engine

MOBIL DELVAC 1300 SUPER 15W40 (35 LTR)

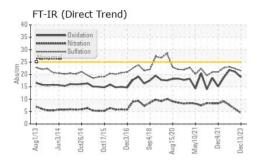
Recommendation

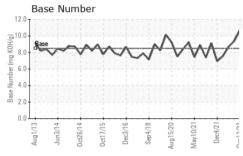
Resample at the next service interval to monitor.

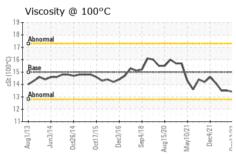
Metal levels are typical for a new component breaking in.

Contamination

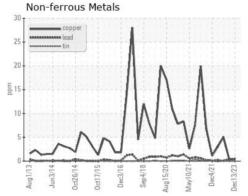
There is no indication of any contamination in the

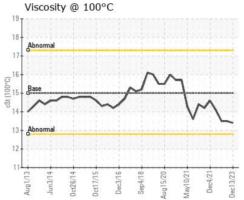

Fluid Condition

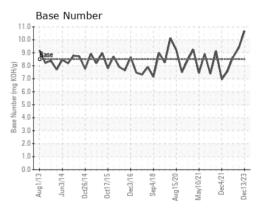

The BN result indicates that there is suitable alkalinity remaining in the oil. The condition of the oil is suitable for further service.


SAMPLE INFORM	IATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0711974	WC0711995	WC0711989
Sample Date		Client Info		13 Dec 2023	11 Dec 2023	11 Aug 2022
Machine Age	hrs	Client Info		372	18300	15629
Oil Age	hrs	Client Info		0	155	500
Oil Changed		Client Info		N/A	N/A	Changed
Sample Status				NORMAL	NORMAL	NORMAL
CONTAMINATION	J	method	limit/base	current	history1	history2
Fuel		WC Method	>5	<1.0	<1.0	<1.0
Water		WC Method	>0.2	NEG	NEG	NEG
Glycol		WC Method		NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185(m)	>100	2	3	11
Chromium	ppm	ASTM D5185(m)	>20	0	0	<1
Nickel	ppm	ASTM D5185(m)	>4	0	<1	2
Titanium	ppm	ASTM D5185(m)		0	0	<1
Silver	ppm	ASTM D5185(m)	>3	<1	<1	0
Aluminum	ppm	ASTM D5185(m)	>20	<1	<1	1
Lead	ppm	ASTM D5185(m)	>40	<1	<1	<1
Copper	ppm	ASTM D5185(m)	>330	<1	<1	5
Tin	ppm	ASTM D5185(m)	>15	0	0	0
Antimony	ppm	ASTM D5185(m)		0	0	<1
Vanadium	ppm	ASTM D5185(m)		0	0	0
Beryllium	ppm	ASTM D5185(m)		0	0	0
Cadmium	ppm	ASTM D5185(m)		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185(m)	0	61	58	41
Barium	ppm	ASTM D5185(m)	0	<1	<1	0
Molybdenum	ppm	ASTM D5185(m)	0	36	41	38
Manganese	ppm	ASTM D5185(m)		0	0	<1
Magnesium	ppm	ASTM D5185(m)	0	494	497	516
Calcium	ppm	ASTM D5185(m)		1496	1666	1747
Phosphorus	ppm	ASTM D5185(m)		693	705	714
Zinc	ppm	ASTM D5185(m)		811	835	875
Sulfur	ppm	ASTM D5185(m)		1979	2012	2144
Lithium	ppm	ASTM D5185(m)		<1	<1	<1
CONTAMINANTS		method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185(m)	>25	8	7	7
Sodium	ppm	ASTM D5185(m)		2	3	3
Potassium	ppm	ASTM D5185(m)	>20	0	0	1
INFRA-RED		method	limit/base	current	history1	history2
Soot %	%	ASTM D7844*	>3	0	0	0
Nitration	Abs/cm	ASTM D7624*	>20	4.5	6.0	7.6
Sulfation	Abs/.1mm	ASTM D7415*	>30	21.5	22.3	23.1

OIL ANALYSIS REPORT







FLUID DEGRADA	ATION	method	limit/base	current	history1	history2
Oxidation Base Number (BN)	Abs/.1mm mg KOH/g	ASTM D7414* ASTM D2896*	>25 8.5	18.9 10.68	21.0 9.39	21.8 8.68
VISUAL		method	limit/base	current	history1	history2
Emulsified Water Free Water	scalar scalar	Visual* Visual*	>0.2	NEG NEG	NEG NEG	NEG NEG
FLUID PROPERT	TES	method	limit/base	current	history1	history2
Visc @ 100°C	cSt	ASTM D7279(m)	15.0	13.4	13.5	13.5

14+	chromiu nickel	ım		Λ			
12			Λ	Λ		M	
8 1	٨			1	M	VV.	
6-	N	W	V	1	1	Λ	1
2-	~	1	1	M	V	(1)	1
		- 4	OR BEREIN	THE PERSON NAMED IN	Section Sectio	for from	4

Laboratory Sample No. Test Package : MAR 2

: WC0711974 Lab Number : 02603684 Unique Number : 5696769

To discuss this sample report, contact Customer Service at 1-800-268-2131.

: WearCheck - C8-1175 Appleby Line, Burlington, ON L7L 5H9 Canadian Coast Guard - CCGS Constable Carriere Received : 18 Dec 2023 **Tested**

Diagnosed

: 21 Dec 2023 : 21 Dec 2023 - Kevin Marson

867 Lakeshore Road Burlington, ON CA L7R 4A6

Contact: Chief Engineer constablecarriereCE@ccgs-ngcc.gc.ca

Test denoted (*) outside scope of accreditation, (m) method modified, (e) tested at external lab. Validity of results and interpretation are based on the sample and information as supplied.

T: (705)542-2737 F: x:

Report Id: CCGSCC [WCAMIS] 02603684 (Generated: 06/25/2024 09:29:58) Rev: 1

Contact/Location: Chief Engineer - CCGSCC