

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

Machine Id APM 2 - Hansen Gearbox (S/N 2HGB) Component

Gearbox Fluic SHELL OMALA 220 (--- GAL)

Recommendation

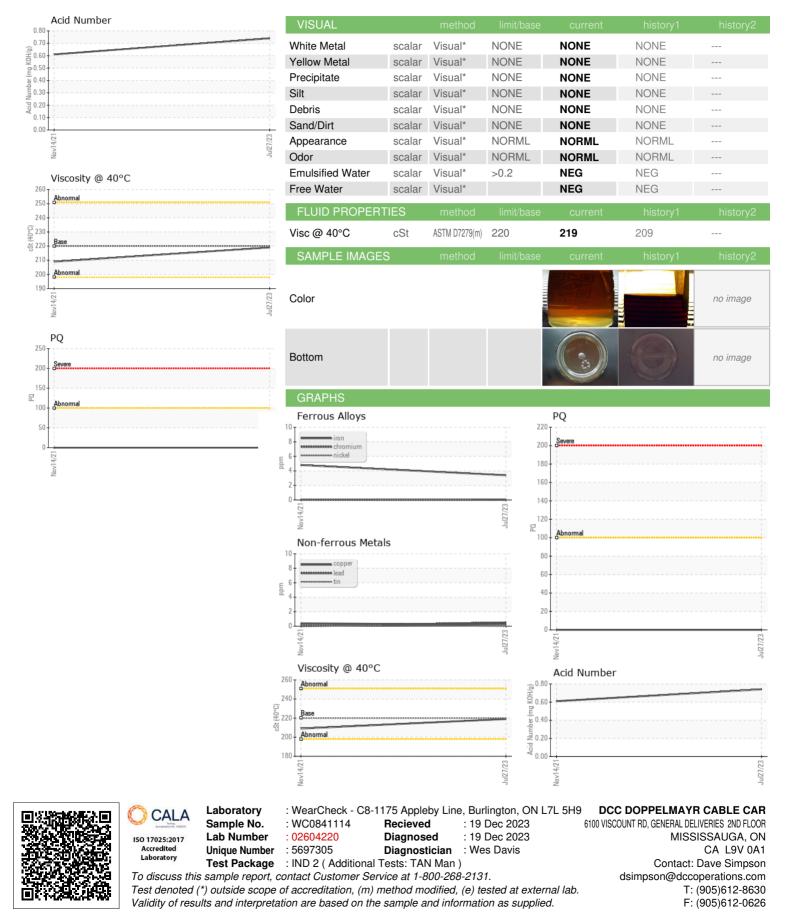
Resample at the next service interval to monitor. NOTE: Please provide information regarding reservoir capacity, filter type and micron rating with next sample.

Wear

All component wear rates are normal.

Contamination

There is no indication of any contamination in the oil.


Fluid Condition

The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

			Nov2021	Jul2023		
SAMPLE INFOR	MATION	method				history2
Sample Number		Client Info		WC0841114	WC0603835	
Sample Date		Client Info		27 Jul 2023	14 Nov 2021	
Machine Age	hrs	Client Info		0	11852	
Oil Age	hrs	Client Info		0	0	
Oil Changed		Client Info		Not Changd	Filtered	
Sample Status				NORMAL	NORMAL	
CONTAMINATIC)N	method	limit/base	current	history1	history2
Water		WC Method		NEG	NEG	
WEAR METALS		method	limit/base	current	history1	history2
PQ		ASTM D8184*		0	0	
	000		>200	3	5	
Iron Chromium	ppm	ASTM D5185(m)			0	
	ppm	ASTM D5185(m)	>15	0		
Nickel	ppm	ASTM D5185(m)	>15	<1	0	
Titanium	ppm	ASTM D5185(m)		0	0	
Silver	ppm	ASTM D5185(m)		<1	0	
Aluminum	ppm	ASTM D5185(m)		0	0	
Lead	ppm	ASTM D5185(m)	>100	<1	0	
Copper	ppm	ASTM D5185(m)	>200	<1	<1	
Tin	ppm	ASTM D5185(m)	>25	0	<1	
Antimony	ppm	ASTM D5185(m)	>5	0	0	
Vanadium	ppm	ASTM D5185(m)		0	0	
Beryllium	ppm	ASTM D5185(m)		0	0	
Cadmium	ppm	ASTM D5185(m)		0	0	
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185(m)	4.4	13	2	
Barium	ppm	ASTM D5185(m)	0.0	<1	0	
Molybdenum	ppm	ASTM D5185(m)	0	0	0	
Manganese	ppm	ASTM D5185(m)		0	0	
Magnesium	ppm	ASTM D5185(m)	0	0	0	
Calcium	ppm	ASTM D5185(m)		1	3	
Phosphorus		ASTM D5185(m)	215	313	294	
Zinc	ppm ppm	ASTM D5185(m)	0	1	9	
Sulfur		ASTM D5185(m) ASTM D5185(m)	7039	15185	9 7709	
	ppm		1000			
Lithium	ppm	ASTM D5185(m)		<1	<1	
CONTAMINANT	S	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185(m)	>50	1	2	
Sodium	ppm	ASTM D5185(m)		<1	<1	
Potassium	ppm	ASTM D5185(m)	>20	0	<1	
FLUID DEGRAD	ATION	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974*		0.74	0.61	
(-)	0 - 0					

OIL ANALYSIS REPORT

Submitted By: Steaffan Hansraj

Page 2 of 2