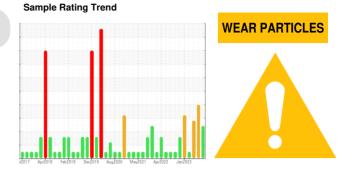


OIL ANALYSIS REPORT


Area

ENGINE ROOM FLOOR

21-A-6464 PORT MAIN ENGINE LUBE OIL (S/N Maint Plan 22463)

Port Main Engine

MOBIL MOBILGARD 412 (22300 LTR)

DIAGNOSIS

Recommendation

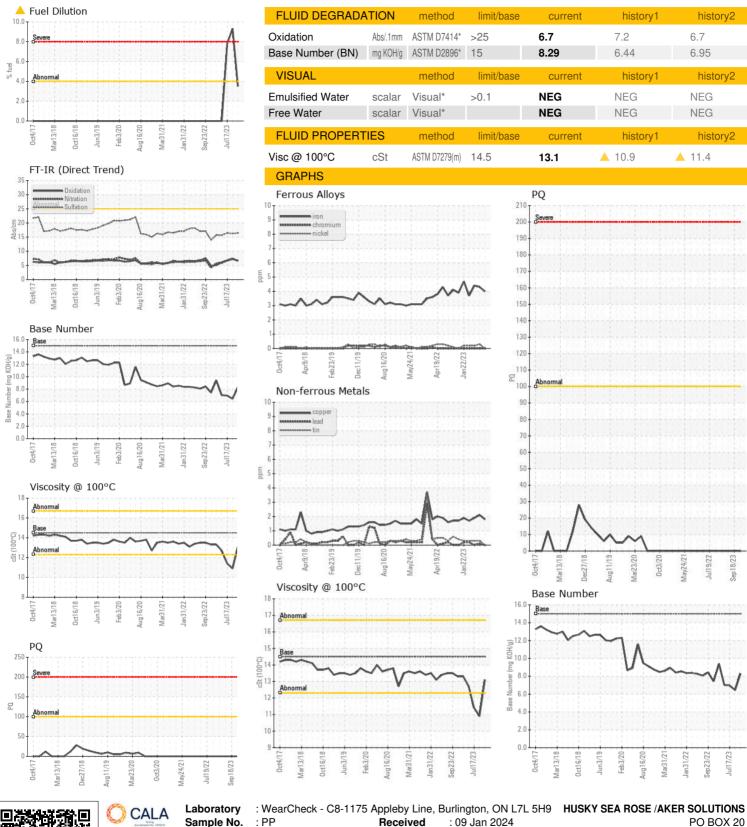
We recommend that you change the oil at the next available stoppage or outage. We recommend an early resample to monitor this condition.

Wear

Wear particle analysis indicates that the ferrous cutting particles are abnormal. Cutting wear particles are caused by either hard protuberances (mis-aligned components, etc.), or abrasives entering the system and embedding themselves in softer materials (sand, etc.), and gouging out mating surfaces.

Contaminants

Light fuel dilution occurring. No other contaminants were detected in the oil.


Oil Condition

The BN result indicates that there is suitable alkalinity remaining in the oil. The oil is no longer serviceable as a result of the abnormal and/or severe wear.

SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		PP	PP	PP
Sample Date		Client Info		27 Nov 2023	18 Sep 2023	17 Jul 2023
Machine Age	days	Client Info		0	0	0
Oil Age	days	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				ABNORMAL	SEVERE	ABNORMAL
CONTAMINATION	V	method	limit/base	current	history1	history2
Water		WC Method	>0.1	NEG	NEG	NEG
Glycol		WC Method		NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
PQ		ASTM D8184*		0	0	0
Iron	ppm	ASTM D5185(m)	>25	4	4	4
Chromium	ppm	ASTM D5185(m)	>5	0	0	0
Nickel	ppm	ASTM D5185(m)	>5	0	<1	<1
Titanium	ppm	ASTM D5185(m)	>3	0	0	0
Silver	ppm	ASTM D5185(m)	>2	0	<1	0
Aluminum	ppm	ASTM D5185(m)	>10	1	<1	1
Lead	ppm	ASTM D5185(m)	>5	0	<1	0
Copper	ppm	ASTM D5185(m)	>5	2	2	2
Tin	ppm	ASTM D5185(m)	>5	0	<1	<1
Antimony	ppm	ASTM D5185(m)		0	0	0
Vanadium	ppm	ASTM D5185(m)		0	0	0
Beryllium	ppm	ASTM D5185(m)		0	0	0
Cadmium	ppm	ASTM D5185(m)		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185(m)	0	1	2	1
Barium	ppm	ASTM D5185(m)	0	0	<1	0
Molybdenum	ppm	ASTM D5185(m)	0	0	0	<1
Manganese	ppm	ASTM D5185(m)	0	0	0	<1
Magnesium	ppm	ASTM D5185(m)	18	12	11	11
Calcium	ppm	ASTM D5185(m)	6350	3361	3015	3082
Phosphorus	ppm	ASTM D5185(m)	200	194	178	185
Zinc	ppm	ASTM D5185(m)	380	307	293	295
Sulfur	ppm	ASTM D5185(m)	6950	5300	4823	4798
Lithium	ppm	ASTM D5185(m)		<1	<1	<1
CONTAMINANTS	1	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185(m)	>20	12	12	11
Sodium	ppm	ASTM D5185(m)	>75	6	6	6
Potassium	ppm	ASTM D5185(m)	>20	<1	<1	<1
Fuel	%	ASTM D7593*	>4.0	△ 3.5	9 .3	△ 7.8
INFRA-RED		method	limit/base	current	history1	history2
C+0/	%	ACTM D7044*	>2	0	0	0
Soot %	70	ASTM D7844*	>2	U	U	U
Nitration	Abs/cm	ASTM D7644 ASTM D7624*	>20	6.6	7.4	6.8

OIL ANALYSIS REPORT

ISO 17025:2017 Laboratory

Sample No. Lab Number

: 02607419 Unique Number : 5708505

Received **Tested**

Diagnosed : 16 Jan 2024 - Kevin Marson Test Package: MAR 3 (Additional Tests: PercentFuel)

: 11 Jan 2024

To discuss this sample report, contact Customer Service at 1-800-268-2131. Test denoted (*) outside scope of accreditation, (m) method modified, (e) tested at external lab. Validity of results and interpretation are based on the sample and information as supplied.

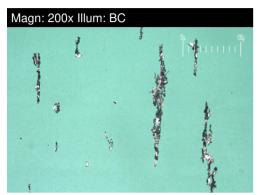
CA A1C 6C9 Contact: Maintenance Supervisor

maintsuper.searose@huskyenergy.ca

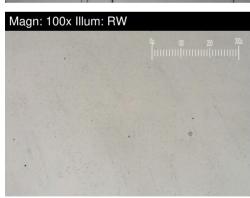
T: x: F: x:

ST. JOHN'S, NL

FERROGRAPHY REPORT

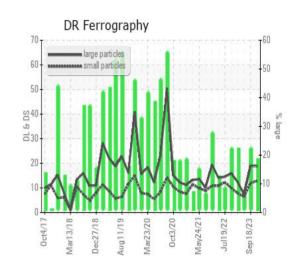

Area

ENGINE ROOM FLOOR


21-A-6464 PORT MAIN ENGINE LUBE OIL (S/N Maint Plan 22463)

Port Main Engine

MOBIL MOBILGARD 412 (22300 LTR)



DR-FERROGRAP	НҮ	method	limit/base	current	history1	history2
Large Particles		DR-Ferr*		18.7	19.0	7.3
Small Particles		DR-Ferr*		12.8	12.0	6.4
Total Particles		DR-Ferr*	>	31.5	31	13.7
Large Particles Percentage	%	DR-Ferr*		18.7	22.6	6.6
Severity Index		DR-Ferr*		110	133	7
FERROGRAPHY		method	limit/base	current	history1	history2
Ferrous Rubbing	Scale 0-10	ASTM D7684*		3	3	2
Ferrous Sliding	Scale 0-10	ASTM D7684*			1	
Ferrous Cutting	Scale 0-10	ASTM D7684*		4 1	1	1
Ferrous Rolling	Scale 0-10	ASTM D7684*		1	1	1
Ferrous Break-in	Scale 0-10	ASTM D7684*				
Ferrous Spheres	Scale 0-10	ASTM D7684*				
Ferrous Black Oxides	Scale 0-10	ASTM D7684*				1
Ferrous Red Oxides	Scale 0-10	ASTM D7684*				
Ferrous Corrosive	Scale 0-10	ASTM D7684*				
Ferrous Other	Scale 0-10	ASTM D7684*				
Nonferrous Rubbing	Scale 0-10	ASTM D7684*				
Nonferrous Sliding	Scale 0-10	ASTM D7684*				
Nonferrous Cutting	Scale 0-10	ASTM D7684*				
Nonferrous Rolling	Scale 0-10	ASTM D7684*				
Nonferrous Other	Scale 0-10	ASTM D7684*				
Carbonaceous Material	Scale 0-10	ASTM D7684*				
Lubricant Degradation	Scale 0-10	ASTM D7684*				
Sand/Dirt	Scale 0-10	ASTM D7684*			1	1
Fibres	Scale 0-10	ASTM D7684*				
Spheres	Scale 0-10	ASTM D7684*				
Other	Scale 0-10	ASTM D7684*		1	1	1

WEAR

Wear particle analysis indicates that the ferrous cutting particles are abnormal. Cutting wear particles are caused by either hard protuberances (mis-aligned components, etc.), or abrasives entering the system and embedding themselves in softer materials (sand, etc.), and gouging out mating surfaces.

This page left intentionally blank