

PROBLEM SUMMARY

Area BOF/VESSELS Machine Id A - 8 Vessel Drive Lube System

Drive End Gearbox Fluid ESSO SPARTAN EP 320 (710 GAL)

COMPONENT CONDITION SUMMARY

RECOMMENDATION

We advise that you check all areas where contaminants can enter the system. We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid. The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather. Resample in 30-45 days to monitor this situation. Please contact your representative for information regarding the proper sampling kits for your service. NOTE: We recommend using IND 3 test kits, this testkit includes Analytical Ferrography which provides a detailed morphological analysis of wear particles present in the fluid.

PROBLEMATIC TEST RESULTS Sample Status SEVERE SEVERE SEVERE Particles >4µm ASTM D7647 >20000 371901 0300332 ▲ 156719 Particles >6µm ASTM D7647 >5000 259854 217152 114917 Particles >14µm ASTM D7647 >640 20076 20449 11861 Particles >21um ASTM D7647 >160 1609 1962 **1278 Oil Cleanliness** ISO 4406 (c) >21/19/16 **26/25/22** 25/25/22 24/24/21

Sample Rating Trend

ISO

Customer Id: LEWBOSC Sample No.: WC0901976 Lab Number: 02610757 Test Package: IND 2

To manage this report scan the QR code

To discuss the diagnosis or test data: Kevin Marson +1 (289)291-4644 x4644 Kevin.Marson@wearcheck.com

To change component or sample information: Gloria Gonzalez +1 (289)291-4643 x4643 <u>gloria.gonzalez@wearcheck.com</u>

RECOMMENDED	ACTIONS			
Action	Status	Date	Done By	Description
Change Filter			?	We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid.
Resample			?	Resample in 30-45 days to monitor this situation.
Contact Required			?	Please contact your representative for information regarding the proper sampling kits for your service.
Alert			?	NOTE: We recommend using IND 3 test kits,
Check Breathers			?	The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather.
Check Dirt Access			?	We advise that you check all areas where contaminants can enter the system.
Filter Fluid			?	We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid.

HISTORICAL DIAGNOSIS

15 Dec 2023 Diag: Kevin Marson

We advise that you check all areas where contaminants can enter the system. We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid. The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather. Resample in 30-45 days to monitor this situation. Please contact your representative for information regarding the proper sampling kits for your service. NOTE: We recommend using IND 3 test kits, this testkit includes Analytical Ferrography which provides a detailed morphological analysis of wear particles present in the fluid.Component wear rates appear to be normal (unconfirmed). There is a high amount of particulates (2 to 100 microns in size) present in the oil. The AN level is acceptable for this fluid. The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.

16 Oct 2023 Diag: Kevin Marson

We advise that you check all areas where contaminants can enter the system. We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid. The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather. Resample in 30-45 days to monitor this situation. Please contact your representative for information regarding the proper sampling kits for your service. NOTE: We recommend using IND 3 test kits, this testkit includes Analytical Ferrography which provides a detailed morphological analysis of wear particles present in the fluid.Component wear rates appear to be normal (unconfirmed). There is a high amount of particulates (2 to 100 microns in size) present in the oil. The AN level is acceptable for this fluid. The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.

16 Aug 2023 Diag: Kevin Marson

We advise that you check all areas where contaminants can enter the system. We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid. The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather. Resample in 30-45 days to monitor this situation. Please contact your representative for information regarding the proper sampling kits for your service. NOTE: We recommend using IND 3 test kits, this testkit includes Analytical Ferrography which provides a detailed morphological analysis of wear particles present in the fluid.All component wear rates are normal. There is a high amount of particulates (2 to 100 microns in size) present in the oil. The AN level is acceptable for this fluid. The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.

OIL ANALYSIS REPORT

Area BOF/VESSELS Machine Id A - 8 Vessel Drive Lube System

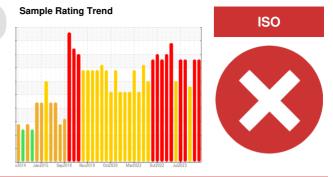
Drive End Gearbox Fluid ESSO SPARTAN EP 320 (710 GAL)

DIAGNOSIS

Recommendation

We advise that you check all areas where contaminants can enter the system. We advise that you perform a filter service, and use off-line filtration to improve the cleanliness of the system fluid. The air breather requires service. If unrated, we recommend that you replace with a suitable micron rated and/or desiccant air breather. If rated, we recommend that you service/replace the breather. Resample in 30-45 days to monitor this situation. Please contact your representative for information regarding the proper sampling kits for your service. NOTE: We recommend using IND 3 test kits, this testkit includes Analytical Ferrography which provides a detailed morphological analysis of wear particles present in the fluid.

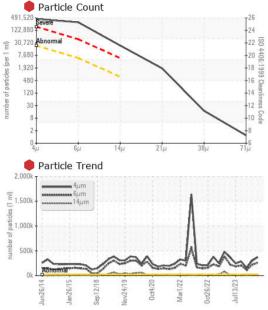
Wear

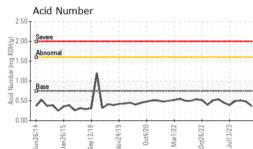

Component wear rates appear to be normal (unconfirmed).

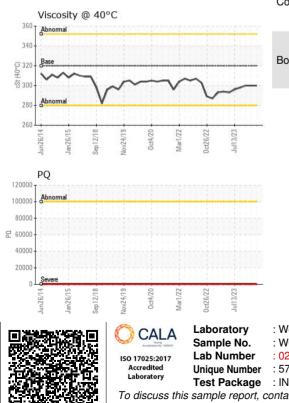
Contamination

There is a high amount of particulates (2 to 100 microns in size) present in the oil.

Fluid Condition


The AN level is acceptable for this fluid. The oil is still serviceable provided that the contaminant(s) can be reduced to acceptable levels.




SAMPLE INFORM	MATION	method	limit/base	current	history1	history2
Sample Number		Client Info		WC0901976	WC0890387	WC0871205
Sample Date		Client Info		22 Jan 2024	15 Dec 2023	16 Oct 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				SEVERE	SEVERE	SEVERE
CONTAMINATIO	N	method	limit/base	current	history1	history2
Water		WC Method	>5	NEG	NEG	NEG
WEAR METALS		method	limit/base	current	history1	history2
PQ		ASTM D8184*	>99999	123	110	125
Iron	ppm	ASTM D5185(m)	>200	118	118	105
Chromium	ppm	ASTM D5185(m)	>15	<1	<1	<1
Nickel	ppm	ASTM D5185(m)	>15	2	2	1
Titanium	ppm	ASTM D5185(m)		0	0	0
Silver	ppm	ASTM D5185(m)		0	<1	<1
Aluminum	ppm	ASTM D5185(m)	>25	<1	<1	<1
Lead	ppm	ASTM D5185(m)	>100	<1	<1	<1
Copper	ppm	ASTM D5185(m)	>200	<1	<1	<1
Tin	ppm	ASTM D5185(m)	>25	0	0	0
Antimony	ppm	ASTM D5185(m)	>5	0	0	0
Vanadium	ppm	ASTM D5185(m)		0	0	0
Beryllium	ppm	ASTM D5185(m)		0	0	0
Cadmium	ppm	ASTM D5185(m)		0	0	0
ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185(m)	.4	2	2	4
Barium	ppm	ASTM D5185(m)		0	0	<1
Molybdenum	ppm	ASTM D5185(m)	0	<1	<1	0
Manganese	ppm	ASTM D5185(m)		<1	<1	<1
Magnesium	ppm	ASTM D5185(m)	0	2	2	1
Calcium	ppm	ASTM D5185(m)	0	5	9	4
Phosphorus	ppm	ASTM D5185(m)	250	262	257	250
Zinc	ppm	ASTM D5185(m)	0	9	9	5
Sulfur	ppm	ASTM D5185(m)		9459	9174	9299
Lithium	ppm	ASTM D5185(m)		1	1	<1
CONTAMINANTS	;	method	limit/base	current	history1	history2
Silicon	ppm	ASTM D5185(m)	>50	2	2	2
Sodium	ppm	ASTM D5185(m)		1	2	2
Potassium	ppm	ASTM D5185(m)	>20	<1	0	0

OIL ANALYSIS REPORT

Particles >6µm ASTM D7647 >5000 259854 217152 114917 Particles >14µm ASTM D7647 >640 20076 20449 11861 Particles >21µm ASTM D7647 >160 1609 1962 1278 Particles >38µm ASTM D7647 >40 15 28 41 Particles >71µm ASTM D7647 >10 1 0 4 Particles >71µm ASTM D7647 >10 26/25/22 25/25/22 24/24/21 FLUID DEGRADATION method limit/base current history1 history2 Acid Number (AN) mg KOHg ASTM D974* 0.75 0.37 0.48 0.51 VISUAL method limit/base current history1 history2 White Metal scalar Visual* NONE LIGHT VLITE NONE Visual* NONE NONE NONE NONE VLITE Precipitate scalar Visual* NONE NONE NONE NONE VLITE Silt scalar Visual* NONE NONE NONE NONE NONE Silt scalar Visual* NONE NONE VLITE VLITE Sand/Dirt scalar Visual* NONE NONE VLITE VLITE Sand/Dirt scalar Visual* NONE NONE VLITE NONE ASTM D7647 >5 NGML NORML NORML NORML NORML NORML Silt scalar Visual* NONE NONE VLITE VLITE Stat scalar Visual* NONE NONE VLITE VLITE Silt scalar Visual* NONE NONE VLITE VLITE Stat Scalar Visual* NORML NORML NORML NORML NORML Stat Scalar Visual* Scalar Visual* NORML NORML NORML NORML Scalar Visual* NORML NORML NORML NORML NORML Stat Scalar Visual* NORML NORML NORML NORML Scalar Visual* Scalar Visual* Scalar Visual* Scalar Visua	FLUID CLEANLIN	IESS	method	limit/base	current	history1	history2
Particles >6µm ASTM D7647 >5000 259854 217152 114917 Particles >14µm ASTM D7647 >640 20076 20449 11861 Particles >21µm ASTM D7647 >160 1609 1962 1278 Particles >38µm ASTM D7647 >40 15 28 41 Particles >71µm ASTM D7647 >10 1 0 4 Particles >71µm ASTM D7647 >10 26/25/22 25/25/22 24/24/21 FLUID DEGRADATION method limit/base current history1 history2 Acid Number (AN) mg KOHg ASTM D974* 0.75 0.37 0.48 0.51 VISUAL method limit/base current history1 history2 White Metal scalar Visual* NONE LIGHT VLITE NONE Visual* NONE NONE NONE NONE VLITE Precipitate scalar Visual* NONE NONE NONE NONE VLITE Silt scalar Visual* NONE NONE NONE NONE NONE Silt scalar Visual* NONE NONE VLITE VLITE Sand/Dirt scalar Visual* NONE NONE VLITE VLITE Sand/Dirt scalar Visual* NONE NONE VLITE NONE ASTM D7647 >5 NGML NORML NORML NORML NORML NORML Silt scalar Visual* NONE NONE VLITE VLITE Stat scalar Visual* NONE NONE VLITE VLITE Silt scalar Visual* NONE NONE VLITE VLITE Stat Scalar Visual* NORML NORML NORML NORML NORML Stat Scalar Visual* Scalar Visual* NORML NORML NORML NORML Scalar Visual* NORML NORML NORML NORML NORML Stat Scalar Visual* NORML NORML NORML NORML Scalar Visual* Scalar Visual* Scalar Visual* Scalar Visua	Particles >4µm		ASTM D7647	>20000	• 371901	• 300332	▲ 156719
Particles >14µm ASTM D7647 >640 20076 20449 11861 Particles >21µm ASTM D7647 >160 1609 1962 1278 Particles >38µm ASTM D7647 >10 1 0 4 Particles >71µm ASTM D7647 >10 1 0 4 Particles >71µm ASTM D7647 >10 1 0 4 Dil Cleanliness ISO 4406 (c) >21/19/16 26/25/22 2/25/22 2/24/24/21 FLUID DEGRADATION method limit/base current history1 history2 Note Number (AN) mg KOHg ASTM D974* 0.75 0.37 0.48 0.51 VISUAL method limit/base current history1 history2 White Metal scalar Visual* NONE NONE NONE NONE NONE Visual* NONE NONE NONE NONE NONE NONE Precipitate scalar Visual* NONE NONE NONE NONE Sitt scalar Visual* NONE NONE NONE NONE Sitt scalar Visual* NONE NONE VLITE VLITE Sand/Dirt scalar Visual* NONE NONE VLITE VLITE Solard/Dirt scalar Visual* NONE NONE VLITE VLITE Sand/Dirt scalar Visual* NONE NONE VLITE VLITE Sitt scalar Visual* NONE NONE VLITE VLITE Sitt scalar Visual* NONE NONE VLITE VLITE Sitt scalar Visual* NONE NONE VLITE VLITE Solard/Dirt scalar Visual* NONE NONE VLITE VLITE Start Scalar Visual* NORML NORML NORML NORML NORML Start Scalar Visual* NORML NORML NORML NORML NORML Start Scalar Visual* NORML NORML NORML NORML Start Scalar Visual* NORML NORML NORML NORML Start Scalar Visual* Scalar Visual* Scalar NEG NEG FLUID PROPERTIES method limit/base current history1 history2 Scolor Scalar Visual* S	Particles >6µm		ASTM D7647	>5000	e 259854	217152	114917
Particles >21 µm ASTM D7647 >160 1609 1962 1278 Particles >38µm ASTM D7647 >40 15 28 41 Particles >71 µm ASTM D7647 >10 1 0 4 Dil Cleanliness ISO 4406 (c) >21/19/16 26/25/22 25/25/22 24/24/21 FLUID DEGRADATION method limit/base current history1 history2 Acid Number (AN) mg KOHg ASTM D974* 0.75 0.37 0.48 0.51 VISUAL method limit/base current history1 history2 White Metal scalar Visual* NONE LIGHT VLITE NONE Vellow Metal scalar Visual* NONE NONE NONE NONE VLITE Precipitate scalar Visual* NONE NONE NONE NONE NONE NONE Silt scalar Visual* NONE NONE NONE NONE NONE Silt scalar Visual* NONE NONE VLITE VLITE VLITE Sand/Dirt scalar Visual* NONE NONE VLITE VLITE NONE Sand/Dirt scalar Visual* NONE NONE VLITE VLITE NONE Sand/Dirt scalar Visual* NONE NONE VLITE NONE FLUID PROPERTIES method limit/base current history1 history2 Misc @ 40°C cSt ASTM D7279(m) 320 300 300 300 SAMPLE IMAGES method limit/base current history1 history2 Color	-		ASTM D7647	>640	20076	20449	11861
Particles >38µm ASTM D7647 >40 15 28 41 Particles >71µm ASTM D7647 >10 1 0 4 Dil Cleanliness ISO 4406 (c) >21/19/16 26/25/22 225/22 24/24/21 FLUID DEGRADATION method limit/base current history1 history2 Acid Number (AN) mg KOHig ASTM D974* 0.75 0.37 0.48 0.51 VISUAL method limit/base current history1 history2 White Metal scalar Visual* NONE LIGHT VLITE NONE Yellow Metal scalar Visual* NONE NONE NONE NONE VLITE Precipitate scalar Visual* NONE NONE NONE NONE NONE Silt scalar Visual* NONE NONE NONE NONE NONE Silt scalar Visual* NONE NONE VLITE VLITE Sand/Dirt scalar Visual* NONE NONE VLITE VLITE NONE Stal* Visual* NONE NONE VLITE VLITE Sand/Dirt scalar Visual* NONE NONE VLITE NONE Silt scalar Visual* NONE NONE VLITE NONE Silt scalar Visual* NONE NONE NONE NONE NONE Silt scalar Visual* NONE NONE VLITE NONE Sand/Dirt scalar Visual* NONE NONE VLITE NONE Silt scalar Visual* NONE NONE VLITE NONE Silt scalar Visual* NONE NONE VLITE NONE Silt scalar Visual* NORML NORML NORML NORML Signar Scalar Visual* NORML NORML NORML NORML Scalar Visual* Scalar Visu			ASTM D7647		• • • •	1962	1278
Particles >71µm ASTM D7647 >10 1 0 4 Dil Cleanliness ISO 4406 (c) >21/19/16 26/25/22 25/25/22 24/24/21 FLUID DEGRADATION method limit/base current history1 history2 Acid Number (AN) mg/K0Hg ASTM D974* 0.75 0.37 0.48 0.51 VISUAL method limit/base current history1 history2 Vhite Metal scalar Visual* NONE NONE NONE VLITE Yeigitate scalar Visual* NONE NONE NONE NONE Opearing scalar Visual* NONE NONE NONE NONE Visual* NONE NONE NONE NONE NONE NONE Sold/Dirt scalar Visual* NORML NORML NORML NORML NORML Odor scalar Visual* NORML NORML NORML NORML NORML NORML NORML Dodor scalar Visual* NORML <td< td=""><td></td><td></td><td></td><td></td><td>-</td><td>· · · ·</td><td></td></td<>					-	· · · ·	
Dil Cleanliness ISO 4406 (c) >21/19/16 26/25/22 25/25/22 24/24/21 FLUID DEGRADATION method limit/base current history1 history2 Acid Number (AN) mg K0Hg ASTM D974* 0.75 0.37 0.48 0.51 VISUAL method limit/base current history1 history2 White Metal scalar Visual* NONE LIGHT VLITE NONE Veriepitate scalar Visual* NONE NONE NONE NONE Precipitate scalar Visual* NONE NONE NONE NONE NONE Silt scalar Visual* NONE NONE NONE NONE NONE Oberis scalar Visual* NONE NONE VLITE NONE Sand/Dirt scalar Visual* NORML NORML NORML NORML NORML NORML Sand/Dirt scalar Visual* NORML NORML NORML NORML NORML NORML NORML NORML	•				-		
FLUID DEGRADATION method limit/base current history1 history2 Axid Number (AN) mg KOHlg ASTM D974* 0.75 0.37 0.48 0.51 VISUAL method limit/base current history1 history2 White Metal scalar Visual* NONE LIGHT VLITE NONE Vereipitate scalar Visual* NONE NONE NONE NONE NONE Precipitate scalar Visual* NONE NONE NONE NONE NONE NONE Silt scalar Visual* NONE NORML							
Accid Number (AN) mg KOHg ASTM D974* 0.75 0.37 0.48 0.51 VISUAL method limit/base current history1 history2 White Metal scalar Visual* NONE LIGHT VLITE NONE Yeight scalar Visual* NONE NONE NONE NONE NONE NONE Yeight scalar Visual* NONE NONE NONE NONE NONE NONE Yeight scalar Visual* NONE NORML NORML NORML NORML NORML NORML NORML NORML NORML					•	*	·
White Metal scalar Visual* NONE LIGHT VLITE NONE Yellow Metal scalar Visual* NONE NONE NONE NONE VLITE Precipitate scalar Visual* NONE NONE NONE NONE NONE Silt scalar Visual* NONE NONE NONE NONE NONE Debris scalar Visual* NONE NONE NONE VLITE VLITE Sand/Dirt scalar Visual* NONE NONE VLITE NONE Appearance scalar Visual* NORML NORML NORML NORML Odor scalar Visual* NORML NORML NORML NORML NORML Odor scalar Visual* NORML NORML NORML NORML NORML NORML Odor scalar Visual* >5 NEG NEG NEG NEG FLUID PROPERTIES method limit/base current history1 history2	Acid Number (AN)						
White MetalscalarVisual*NONELIGHTVLITENONEYellow MetalscalarVisual*NONENONENONENONEVLITEPrecipitatescalarVisual*NONENONENONENONENONESiltscalarVisual*NONENONENONENONENONEDebrisscalarVisual*NONENONEVLITEVLITESand/DirtscalarVisual*NONENONEVLITENONEAppearancescalarVisual*NORMLNORMLNORMLNORMLAppearancescalarVisual*NORMLNORMLNORMLNORMLAdorscalarVisual*NORMLNORMLNORMLNORMLAdorscalarVisual*NORMLNORMLNORMLNORMLAdorscalarVisual*S5NEGNEGNEGFLUID PROPERTIESmethodlimit/basecurrenthistory1history2Visc@ 40°CcStASTM D7279(m)320300300300SAMPLE IMAGESmethodlimit/basecurrenthistory1history2ColorImage: StalarVisualImage: StalarImage: StalarImage: Stalar			method	limit/base	current	history1	history2
Yellow Metal scalar Visual* NONE NONE NONE VONE NONE NOR NOR<	White Metal	scalar	Visual*	NONE	LIGHT		
PrecipitatescalarVisual*NONENONENONENONENONESiltscalarVisual*NONENONENONENONENONEDebrisscalarVisual*NONENONEVLITEVLITESand/DirtscalarVisual*NONENONEVLITENONESand/DirtscalarVisual*NONENONEVLITENONESand/DirtscalarVisual*NORMLNORMLNORMLNORMLSand/DirtscalarVisual*NORMLNORMLNORMLNORMLSand/DirtscalarVisual*NORMLNORMLNORMLNORMLSand/DirtscalarVisual*NORMLNORMLNORMLNORMLSandreescalarVisual*NORMLNORMLNORMLNORMLSandreescalarVisual*>5NEGNEGNEGFLUID PROPERTIESmethodlimit/basecurrenthistory1history2Visc@ 40°CcStASTM D7279(m)320300300300SAMPLE IMAGESmethodlimit/basecurrenthistory1history2ColorImage: SandreeImage: SandreeImage: SandreeImage: SandreeImage: SandreeSandreeImage: SandreeImage: SandreeImage: SandreeImage: SandreeImage: SandreeFLUID PROPERTIESmethodlimit/basecurrenthistory1history2ColorImage: SandreeImage: Sa					-		
Silt scalar Visual* NONE NONE NONE NONE NONE Debris scalar Visual* NONE NONE VLITE VLITE Sand/Dirt scalar Visual* NONE NONE VLITE VLITE Sand/Dirt scalar Visual* NONE NONE VLITE NONE Appearance scalar Visual* NORML NORML NORML NORML Odor scalar Visual* NORML NORML NORML NORML Odor scalar Visual* NORML NORML NORML NORML Odor scalar Visual* >5 NEG NEG NEG Emulsified Water scalar Visual* >5 NEG NEG NEG FLUID PROPERTIES method limit/base current history1 history2 Visc @ 40°C cSt ASTM D7279(m) 320 300 300 300 SAMPLE IMAGES method limit/base current history1 history2							
DebrisscalarVisual*NONENONEVLITEVLITESand/DirtscalarVisual*NONENONEVLITENONEAppearancescalarVisual*NORMLNORMLNORMLNORMLNORMLOdorscalarVisual*NORMLNORMLNORMLNORMLNORMLDodorscalarVisual*NORMLNORMLNORMLNORMLNORMLEmulsified WaterscalarVisual*>5NEGNEGNEGErree WaterscalarVisual*NEGNEGNEGFLUID PROPERTIESmethodlimit/basecurrenthistory1history2Visc @ 40°CcStASTM D7279(m)320300300300SAMPLE IMAGESmethodlimit/basecurrenthistory1history2ColorImage: State					-		
Sand/DirtscalarVisual*NONENONEVLITENONEAppearancescalarVisual*NORMLNORMLNORMLNORMLNORMLOdorscalarVisual*NORMLNORMLNORMLNORMLNORMLEmulsified WaterscalarVisual*>5NEGNEGNEGErree WaterscalarVisual*NEGNEGNEGFLUID PROPERTIESmethodlimit/basecurrenthistory1history2Visc @ 40°CcStASTM D7279(m)320300300300SAMPLE IMAGESmethodlimit/basecurrenthistory1history2ColorImage: State							
Appearance scalar Visual* NORML		scalar			-		
Dodor scalar Visual* NORML NORML NORML NORML NORML Emulsified Water scalar Visual* >5 NEG NEG NEG Free Water scalar Visual* >5 NEG NEG NEG FLUID PROPERTIES method limit/base current history1 history2 Visc @ 40°C cSt ASTM D7279(m) 320 300 300 300 SAMPLE IMAGES method limit/base current history1 history2 Color Image: State	Sand/Dirt	scalar	Visual*	NONE	NONE	VLITE	NONE
Emulsified Water scalar Visual* >5 NEG NEG NEG NEG Free Water scalar Visual* Imit/base current history1 history2 FLUID PROPERTIES method limit/base current history1 history2 Visce @ 40°C cSt ASTM D7279(m) 320 300 300 300 SAMPLE IMAGES method limit/base current history1 history2 Color Imit/base current history1 history2	Appearance	scalar	Visual*	NORML	NORML	NORML	NORML
Free Water scalar Visual* NEG NEG NEG FLUID PROPERTIES method limit/base current history1 history2 Visc @ 40°C cSt ASTM D7279(m) 320 300 300 300 SAMPLE IMAGES method limit/base current history1 history2 Color	Odor	scalar	Visual*	NORML	NORML	NORML	NORML
Free Water scalar Visual* NEG NEG NEG FLUID PROPERTIES method limit/base current history1 history2 /isc @ 40°C cSt ASTM D7279(m) 320 300 300 300 SAMPLE IMAGES method limit/base current history1 history2 Color Imit/base current history1 history2	Emulsified Water	scalar	Visual*	>5	NEG	NEG	NEG
Visc @ 40°C cSt ASTM D7279(m) 320 300 300 300 SAMPLE IMAGES method limit/base current history1 history2 Color Image: Same state s	Free Water	scalar	Visual*			NEG	NEG
Visc @ 40°C cSt ASTM D7279(m) 320 300 300 300 SAMPLE IMAGES method limit/base current history1 history2 Color Image: Same state s	FLUID PROPERT	TIES	method	limit/base	current	historv1	historv2
Color	/isc @ 40°C			320			
Color	SAMPLE IMAGE	S	method	limit/base	current	historv1	historv2
							,
Bottom							-
Bottom	50101					1975	
Sottom	20101				0		
							\bigcirc
	Bottom						

: WearCheck - C8-1175 Appleby Line, Burlington, ON L7L 5H9 STELCO - BOSC - Basic Oxygen Slab Caster : WC0901976 Recieved : 23 Jan 2024 2330 Regional Road #3, Door: BOSC8 : 02610757 Diagnosed : 25 Jan 2024 NANTICOKE, ON Unique Number : 5711843 Diagnostician : Kevin Marson CA N0A 1L0 Test Package : IND 2 (Additional Tests: PQ) Contact: Tom Walden Thomas.Walden@stelco.com To discuss this sample report, contact Customer Service at 1-800-268-2131. Test denoted (*) outside scope of accreditation, (m) method modified, (e) tested at external lab. T: (519)587-4541 Validity of results and interpretation are based on the sample and information as supplied. F: (519)587-7702