

OIL ANALYSIS REPORT

Sample Rating Trend

NORMAL

EQ35 SMS PRESS

Component

Hydraulic System

AW HYDRAULIC OIL ISO 46 (15000 LTR)

DI			

Recommendation

Little or no information is provided as to the component and lubricant being tested. Recommendations are therefore generic in nature and may not apply to the current application. Please forward information as to equipment type, reservoir capacity, lubricant type and any pertinent information to allow for a more accurate assessment. Resample at the next service interval to monitor. The fluid was not specified, however, a fluid match indicates that this fluid is (GENERIC) AW HYDRAULIC OIL ISO 46. Please confirm. NOTE: Please provide information regarding reservoir capacity, filter type and micron rating with next sample.

Wear

All component wear rates are normal.

Contamination

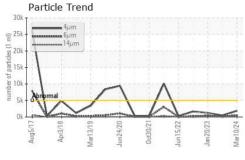
The system cleanliness is acceptable for your target ISO 4406 cleanliness code. The system and fluid cleanliness is acceptable.

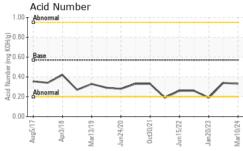
Fluid Condition

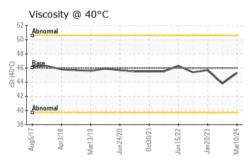
The AN level is acceptable for this fluid. The condition of the oil is suitable for further service.

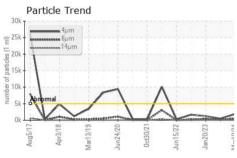
		lug2017 Apr	2018 Mar2019 Jun202	0 Oct2021 Jun2022 Jan20	23 Mar2024	
SAMPLE INFORMATION		method limit/base		current	history1	history2
Sample Number		Client Info		WC0908470	WC0857824	WC0780955
Sample Date		Client Info		10 Mar 2024	25 Sep 2023	20 Jan 2023
Machine Age	hrs	Client Info		0	0	0
Oil Age	hrs	Client Info		0	0	0
Oil Changed		Client Info		N/A	N/A	N/A
Sample Status				NORMAL	NORMAL	NORMAL
CONTAMINATIO	N	method	limit/base	current	history1	history2
Water		WC Method	>0.05	NEG	NEG	NEG

Water		WC Method	>0.05	5 NEG NEG		NEG
WEAR METALS		method	limit/base	current	history1	history2
Iron	ppm	ASTM D5185(m)	>20	5	3	4
Chromium	ppm	ASTM D5185(m)	>20	<1	<1	<1
Nickel	ppm	ASTM D5185(m)	>20	<1	<1	0
Titanium	ppm	ASTM D5185(m)		0	0	0
Silver	ppm	ASTM D5185(m)		0	0	0
Aluminum	ppm	ASTM D5185(m)	>20	<1	0	0
Lead	ppm	ASTM D5185(m)	>20	2	1	2
Copper	ppm	ASTM D5185(m)	>20	19	17	19
Tin	ppm	ASTM D5185(m)	>20	<1	<1	1
Antimony	ppm	ASTM D5185(m)		0	0	<1
Vanadium	ppm	ASTM D5185(m)		0	0	0
Beryllium	ppm	ASTM D5185(m)		0	0	0
Cadmium	ppm	ASTM D5185(m)		0	0	0
ADDITIVEC						


ADDITIVES		method	limit/base	current	history1	history2
Boron	ppm	ASTM D5185(m)	5	<1	<1	<1
Barium	ppm	ASTM D5185(m)	5	0	0	0
Molybdenum	ppm	ASTM D5185(m)	5	0	0	<1
Manganese	ppm	ASTM D5185(m)		0	0	0
Magnesium	ppm	ASTM D5185(m)	25	2	<1	<1
Calcium	ppm	ASTM D5185(m)	200	52	52	52
Phosphorus	ppm	ASTM D5185(m)	300	335	284	358
Zinc	ppm	ASTM D5185(m)	370	384	363	389
Sulfur	ppm	ASTM D5185(m)	2500	778	877	749
Lithium	nium ppm ASTM D5185(m)			<1	<1	<1
CONTAMINANTS		method	limit/base	current	history1	history2


CONTAMINANT	CONTAMINANTS					history2	
Silicon	ppm	ASTM D5185(m)	>15	0	1	0	
Sodium	ppm	ASTM D5185(m)		1	<1	<1	
Potassium	ppm	ASTM D5185(m)	>20	<1	0	0	


FLUID CLEANLINESS	method	limit/base	current	history1	history2
Particles >4µm	ASTM D7647	>5000	1874	499	1236
Particles >6µm	ASTM D7647	>1300	487	150	399
Particles >14μm	ASTM D7647	>160	44	12	68
Particles >21µm	ASTM D7647	>40	12	3	27
Particles >38μm	ASTM D7647	>10	1	1	1
Particles >71μm	ASTM D7647	>3	0	1	0
Oil Cleanliness	ISO 4406 (c)	>19/17/14	18/16/13	16/14/11	17/16/13



OIL ANALYSIS REPORT

FLUID DEGRADA	NOITA	method	limit/base	current	history1	history2
Acid Number (AN)	mg KOH/g	ASTM D974*	0.57	0.33	0.34	0.19
VISUAL		method	limit/base	current	history1	history2
White Metal	scalar	Visual*	NONE	NONE	NONE	NONE
Yellow Metal	scalar	r Visual* NONE		NONE	NONE	NONE
Precipitate	scalar	Visual*	NONE	NONE	NONE	NONE
Silt	scalar	Visual*	NONE	NONE	NONE	NONE
Debris	scalar	Visual*	NONE NONE		NONE	NONE
Sand/Dirt	scalar	Visual*	NONE	NONE	NONE	NONE
Appearance	scalar	Visual*	NORML	NORML	NORML	NORML
Odor	scalar	Visual*	NORML	NORML	NORML	NORML
Emulsified Water	scalar	Visual*	>0.05	NEG	NEG	NEG
Free Water	scalar	Visual*		NEG	NEG	NEG
FLUID PROPERT	TIES	method	limit/base	current	history1	history2
Visc @ 40°C	cSt	ASTM D7279(m)	46	45.3	43.8	45.7

Color			
Bottom			

	GRA	PHS							
10 T		iron	mium						Particle Count 491,520 122,880 Severe
		IIICA						********	30,720
0-	Aug5/17	Apr3/18	Mar13/19	Jun24/20 -	Oct30/21-	Jun15/22	Jan20/23 -	Mar10/24 -	7,680 Abnormal -20 406:1999 Cleanfiness 1,920 -14 18 1,920 -14 120 -14 -14 120 -14
	Non-	ferro	us Me	etals					99 Clea
30		cop	per		_				120 - 14 nimes 20 - 120 - 14 nimes 20 - 12
E 20-		tin							12 O d d
01	Aug5/17	Apr3/18	Mar13/19	Jun24/20	0ct30/21	Jun15/22	Jan20/23	Mar10/24	2-
55 -	Visco	sity	@ 40°	,C					⁴ μ 6μ 14μ 21μ 38μ 71μ Acid Number
	Abnorm	nal		1					1.00 Abnormal
(3.04) 45 40 40	Abnorm	nal							Base
35	Aug5/17 - 0	Apr3/18	Mar13/19	Jun24/20	0ct30/21	Jun15/22	Jan20/23	Mar10/24	Acid Number (mg KOH/g) National (mg Non-kg) And (mg Non-kg) National (mg Non-kg) And (mg Non-kg) National

CALA ISO 17025:2017 Accredited Laboratory

Laboratory Sample No.

Test Package : IND 2

: WC0908470 Lab Number : 02621080 Unique Number : 5746199

: WearCheck - C8-1175 Appleby Line, Burlington, ON L7L 5H9 Received

Tested Diagnosed

: 11 Mar 2024 : 12 Mar 2024

: 12 Mar 2024 - Wes Davis

CA N8N 2L9 Contact: Guilherme Medeiros Guilherme.Medeiros@astrex.ca T: (226)363-0100

To discuss this sample report, contact Customer Service at 1-800-268-2131. Test denoted (*) outside scope of accreditation, (m) method modified, (e) tested at external lab. Validity of results and interpretation are based on the sample and information as supplied.

F:

ASTREX

383 PATILLO RD

WINDSOR, ON